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Abstract

Crowd estimation is a vital component of crowd analysis. It finds many applications in real-world

scenarios, e.g. huge gatherings management like Hajj, sporting and musical events, or political

rallies. Automated crowd counting facilitates better and effective management of such events and

consequently prevents any undesired situation. This is a very challenging problem in practice since

there exists a significant difference in the crowd number in and across different images, varying

image resolution, large perspective, severe occlusions, and dense crowd-like cluttered background

regions. Current approaches do not handle huge crowd diversity well and thus perform poorly in

cases ranging from extreme low to high crowd-density, thus, yielding huge crowd underestimation

or overestimation. Also, manual crowd counting proves to be infeasible due to very slow and

inaccurate results. To address these major crowd counting issues and challenges, we investigate

two different types of input data: uni-modal (image) and multi-modal (image and audio).

In the uni-modal setting, we propose and analyze four novel end-to-end crowd counting net-

works, ranging from multi-scale fusion-based models to uni-scale one-pass and two-pass multi-

task networks. The multi-scale networks employ the attention mechanism to enhance the model

efficacy. On the other hand, the uni-scale models are well-equipped with novel and simple-yet-

effective patch re-scaling module (PRM) that functions identical but is more lightweight than

multi-scale approaches. Experimental evaluation demonstrates that the proposed networks out-

perform the state-of-the-art in majority cases on four different benchmark datasets with up to

12.6% improvement for the RMSE evaluation metric. The better cross-dataset performance also

validates the better generalization ability of our schemes. For the multi-modal input, effective

feature-extraction (FE) and strong information fusion between two modalities remain a big chal-

lenge. Thus, the multi-modal novel network design focuses on investigating different features

fusion techniques amid improving the FE. Based on the comprehensive experimental evaluation,
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the proposed multi-modal network increases the performance under all standard evaluation criteria

with up to 33.8% improvement in comparison to the state-of-the-art. The application of multi-

scale uni-modal attention networks also proves more effective in other deep learning domains,

as demonstrated successfully on seven different scene-text recognition task datasets with better

performance.
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Chapter 1

Introduction

This chapter introduces the problem and motivation, background and challenges, our major con-

tributions, and related work. First, we discuss the motivation and challenges related to the crowd

estimation task. Next, we briefly explain different types of methods and approaches we have pro-

posed and designed for effective crowd estimation. At the end of this chapter, we list down our

major contributions, related work and the organization of this work. Most part of this chapter

comes from introduction and related work sections of our work [79, 80, 81, 82, 83, 84].

1.1 Motivation

Deep learning has achieved significant progress in many computer vision applications, like image

classification [9, 3], object detection [22, 18], face recognition [4], depth estimation [12, 13],

image translation [40, 39], and crowd counting [82, 6, 85]. Crowd estimation aims to count the total

number of people in the given image (image-only) or combination of different input modalities (e.g.

Image+Audio). This dissertation mainly focuses on designing effective and independent crowd

counting networks for two different types of inputs: Image-only (uni-modal) and Audio+Visual

(multi-modal). Crowd estimation finds a very important and integral place in the crowd analysis

paradigm. Crowd gatherings are ubiquitous and bound to happen frequently at sports, musical,

political, and other social events. Accurate and automated crowd estimation can help in effectively

organizing large crowd gatherings. Whereas, manual human-based crowd counting process is

unreliable and ineffective due to the tedious and time-consuming nature of this task. In addition

to the crowd estimation, the same methods can also be applied to other fields like the counting of

1



animals, crops, and microscopic organisms [1, 28].

1.2 Background and Challenges

In recent years, computer vision has witnessed great developments in several sub-areas, such as

image classification [40], object detection [20], image translation [42], and face recognition [2],

with the introduction of convolution neural networks (CNNs). Inevitably, recent state-of-the-art

crowd counting methods are overwhelmingly dominated by the CNN based approaches, which

generally belong to either direct regression (DR) [7], [27], [36] based or density-map estimation

(DME) [18], [24], [29], [33], [35], [41], [45] based architectures. Here, we separately discuss

the background and challenges associated with uni-modal (Image-only) and multi-modal (Audio-

Visual) crowd counting.

1.2.1 Uni-Modal Crowd Estimation

Automated uni-modal crowd counting comes up with different challenges including large perspec-

tive, huge crowd diversity across different images, severe occlusion, and dense crowd-like complex

background patterns. The direct regression (DR) based methods directly regress or estimate the

crowd number from the input image or patch. These methods alone do not prove effective for

crowd counting due to huge crowd diversity and multi-scale variation in and across different im-

ages. The DME based methods perform crowd counting by estimating the crowd-density value

per pixel. This type of approach, in general, also tends to struggle against the above-stated major

issues and challenges.

Multi-column or multi-regressor CNN based architectures [24], [29], [33], [45] have proved to

be very effective for crowd counting tasks. MCNN [45] is a state-of-the-art three column density-

map estimation based end-to-end crowd counting network, where each CNN based column spe-

cializes in handling the specific crowd-density level. At the end of this network, all columns are

merged together to yield the crowd estimate after the remaining processing. Similarly, multi-
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Input Image Ground-truth density-map

Visual-only [31] Audio-Visual [31] Audio-Visual (Ours)

Figure 1.1: For the low-quality input image with severe conditions such as noise, low-illumination,
or low-resolution, the proposed audio-visual model yields the best and more fine-grained people
estimate (PE) as evaluated using the ground-truth density-map and people count (PC).

column based architectures [18], [29] utilize multiple specialized crowd count regressors to cope

with multiple crowd-density scales separately. For example, Switch-CNN [29], a density map es-

timation based network, consists of a CNN based switch classifier that routes the input image or

patch to one of three crowd count regressors, where each regressor deals with a specific crowd

level. In addition, many single-column or single-regressor based architectures [17], [30] have

also been proposed to address the crowd counting issues and challenges. These methods produce

promising results, but still lack the generalization ability for crowd estimation, ranging from low

to high crowd density.

1.2.2 Multi-modal (Audio-Visual) Crowd Estimation

Many deep learning-based image-only schemes [81, 85, 83, 35, 83, 40, 127, 60] have been pro-

posed to date, ranging from single and multi-branch networks [127, 81, 83], multi-regressors [85]

based to trellis networks [40]. Although they show reasonable performance in regular images,

they fail to generalize well in many practical scenarios such as low illumination and lighting con-
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Figure 1.2: Different Branches of Our Crowd Estimation Work. Our research diversely ranges
from uni-modal to multi-modal crowd counting.

ditions, noise, severe occlusion, and low-resolution images, where visual information is scarce.

Consequently, they give huge crowd under-estimation as shown in Fig. 1.1. Lack of visual clues

may also invoke highly sensitized behavior in these models towards different image regions, re-

sulting in large over-estimation. Moreover, in the case of regular images (uni-modal), sub-optimal

capabilities of these state-of-the-arts implicate that there is a lot of room for further improvement.

1.3 Our Work Overview

To address the above mentioned crowd estimation challenges, we investigate two different types

of input modalities: uni-modal (Image) and multi-modal (Image and Audio) as shown in Fig. 1.2.

In the uni-modal setting, we design five (four end-to-end and one modular) novel crowd counting

networks with different architectures. Three of them are uni-scale channel resolution networks,

where we deploy the novel and simple-yet-effective patch re-scaling module (PRM) to balance

it to multi-scale capability. The remaining two belong to multi-scale fusion-based networks that

focus on multiple channels with different resolutions. The uni-scale networks consume the input

either once (one-pass) or twice (two-pass) based on the architectural design. We discuss all five
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uni-modal models individually in detail in the next chapters. In the multi-modal environment, we

investigate the methods for effective integration and fusion of the Image and Audio inputs amid

extracting the valuable and strong features for both modalities. We also apply our multi-scale

technique on the scene-text recognition task with promising and effective results. All the uni-

modal and multi-modal networks have been comprehensively and separately explained in the next

chapters.

1.4 Contributions of Dissertation

The major contributions of our work are listed as follows:

1.4.1 Uni-Modal Crowd Counting Networks

• We extensively study the crowd estimation problem for the uni-modal (image-only) input

and design several novel modules and networks to address key issues and challenges in this

domain amid mitigating major SOTA limitations.

• We propose a conceptually simple yet effective and plug-and-play based patch rescaling

module (PRM) to address the major huge crowd diversity issue in crowd counting problems.

• We present three new uni-modal and uni-branch crowd counting multi-task frameworks

that utilize the lightweight PRM module instead of computationally expensive recent multi-

column or multi-regressor based architectures.

• We devise a new multi-resolution and multi-branch feature-level fusion based end-to-end

crowd counting approach for still images that effectively deals with significant variations of

crowd-density, lighting conditions, and large perspective.
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• We also propose an alternative to the patch rescaling module by more effectively using the

input priors. Unlike the PRM, the proposed module fully utilizes all three crowd density lev-

els without requiring any compromising or additional crowd-density classification process.

• We also present a novel multi-resolution and multi-task PRM based visually attended crowd-

counting network for static images that effectively address major crowd counting challenges,

including the issues of crowd-like background regions and huge crowd-variation.

• We deploy the plug-and-play PRM module so as to further push its boundaries and utilize it

more effectively as compared to its previous deployments.

• We employ the visual attention mechanism in a unique and effective way on early-stage

feature-maps that facilitate the later-stage channels to better understand the foreground re-

gions.

• Experimental evaluation demonstrates that the proposed networks outperform the state-of-

the-art methods in majority cases on four different benchmark datasets with up to 12.6%

improvement in terms of the RMSE evaluation metric. Better cross-dataset performance

also validates the better generalization ability of our schemes.

1.4.2 Multi-Modal Crowd Estimation

• We propose a novel audio-visual multi-task crowd counting network for effective estimation

in both regular and severe conditions. To the best of our knowledge, this is the first attempt

to use the transformer-style mechanism for this task.

• We introduce the notion of auxiliary PIR and PCE information, and empirically show that

it is beneficial for better modalities association and extracting rich visual features without
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Figure 1.3: Crowd Counting methods category-wise. Most methods nowadays belong to either
regression based or density map estimation based CNN methods.

requiring any extra ground-truth annotation process.

• We also design an image-only variant of our model. Extensive experimental evaluations on

benchmark datasets indicate that the proposed networks significantly outperform the state-

of-the-art.

1.5 Related Work

Different crowd estimation methods have been proposed over the time to address the key problems

like huge crowd diversity, severe occlusions, cluttered crowd-like background regions, and large

perspective changes. Uni-modal Crowd estimation research can be divided into pre deep-learning

(classical) and post deep-learning era because of superior performance of deep-learning based

techniques including convolution neural networks (CNNs) as shown in Fig. 1.3.
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1.5.1 Uni-Modal Classical Techniques

Classical approaches can be categorized into two classes: Counting by detection and counting

by regression. Count by detection classical methods first detect individual persons in the image

[111, 107, 22, 52] using handcrafted features. Then, the final image count is obtained by the

summation of all detections. These detectors fail quite drastically in the case of high-density

crowd because of few pixels per person. Classical regression based methods [10, 12, 78] learn to

directly map the image local patch to the crowd count. They yield better performance, however,

they still suffer from lack of generalization on reasonable crowd diversity range.

1.5.2 Uni-Modal CNN-based (deep-learning) Techniques

CNN based methods have been widely used nowadays for crowd counting. They are of three types:

Counting by detection, by regression, and density-map estimation based methods.

1.5.2.1 Counting by Detection

In detection based methods, CNN detectors (like YOLO, Faster-RCNN [23, 76]) detect each person

in the image, followed by the sum of all detections to yield final crowd estimate. These methods

fail in the case of high occlusion and crowd.

1.5.2.2 Counting by Regression

Regression based methods [102, 104] learn to directly regress the crowd count. Wang et. al [104]

used the AlexNet [49] based scheme to directly regress and estimate the people number. These

regressors alone do not generalize well for the huge crowd diversity range.

1.5.2.3 Density Map Estimation based Crowd Counting

The density-map estimation methods [127, 85, 94, 126, 59, 103, 91, 114, 40] estimate crowd den-

sity value per pixel. The final count is obtained from the sum of all pixel density values. These

8



Figure 1.4: Multi-column convolutional neural network (MCNN) based on density map estimation
method [127].

methods are widely used recently with better performance and focus on multi-scale or diverse

crowd-density range handling. Zhang et al. [127] proposed a three-column architecture, where

each column caters respective scale using different filter sizes, followed by a fusion of the columns

to produce final crowd density-map as shown in Fig. 1.4. Similar to this idea, Switch-CNN [85]

utilized three specialized count regressors to cater three different scales. Each input image routes to

one of these regressors using a switch CNN-based classifier. Cascaded-mtl [94] generated density-

map by first classifying image 10-way prior to actual density-map production. Recently, Zhang

et al. [126] proposed a scale-adaptive network, which employs a single backbone structure and

the same filter size and combines different layers feature maps to handle the multi-scale varia-

tion. Ranjan et al. [75] proposed a two-column network where first low-resolution based column

feature maps are combined with high-resolution input column to generate final density map. Re-

cently, Wan et al. [103] used support image density-map to predict the input image density-map

by the residual regression based difference between the two density-maps. Xu et al. [115] first

grouped patch-level density-maps into several density levels, followed by the automatic normal-

ization via an online learning strategy with a multipolar center loss. Liu et al. [58] proposed a

hybrid approach that coupled both detection and density-map estimation techniques, and used the

appropriate counting mode based on the crowd-density.
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1.5.3 Multi-Modal CNN-based (deep-learning) Networks

Like the uni-modal networks, multi-modal paradigm also focuses on the density-map estimation

based methods. However, the multi-modal dimension stands at the early stage of research with

just one noticeable work [31], where the authors combine image and audio to estimate the crowd

density-map. Additionally, uni-modal work contains lots of standard datasets for analysis and

comparison, whereas the multi-modal domain just published its first audio-visual crowd estimation

dataset [31].

1.5.3.1 Audio-Visual Learning

Audio-visual representation learning aims to aid the visual modality with audio or vice-versa.

Early speech perception research [66] demonstrates that the visual information can change what

people hear, i.e., McGurk Effect. Since then, vision and audio modalities are widely explored

in speech recognition[123, 25, 68, 96], video classification [112], emotion recognition [46] and

video description [41]. Multiple kernels are broadly implemented as the fusion module by feeding

the kernels with data from different modalities [11, 92, 110]. Another fusion method is based on

graphical models considering its advantages in temporal related tasks [25, 28]. Besides, neural

networks raise more attention in fusion especially since the appearance of RNN and LSTM [72,

96]. More recently, transformer-based [101] fusion raises growing attention [1, 98, 74, 34, 42],

especially after its application in vision [19]. In addition to that, there are also some model-agnostic

fusion methods, including the simple concatenation [50, 14, 122] and element-wise operation [21,

100].

1.5.3.2 Crowd Counting

The research of people count mainly focuses on image-only crowd estimation, and targets several

issues such as varying crowd-density and scale, large perspective and heavy occlusions. They are

of three categories: Count-by-detection (Det), by-direct-regression (DReg), and by-density-map

(DMap). The Det methods [86, 53] detect each person via some standard object detectors (e.g.
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Faster-RCNN [23], YOLO [76]). These methods give unsatisfactory results in the high-density

crowd scenarios. The DReg models [81, 83, 104, 82, 104] directly regress the crowd number us-

ing CNN-based structures. Wang et al. [104] deployed the AlexNet [49] variant for direct crowd

regression. Recently, Sajid et al. designed two different types of direct-regression counting meth-

ods [83, 82] that use the patch-rescaling module (PRM) and branch structure to deal with varying

crowd levels. But these models fail to utilize the valuable density-map based computation. The

DMap methods [35, 127, 85, 60, 95] estimate crowd density-map, where each pixel indicates

crowd-density. The pixel values are then summed up to obtain the final count. Switch-CNN [85]

uses CCN-based switch that routes the image to one of three specialized regressors, each dealing

with a specific crowd-density. Li et al. [54] employed dilation layers for better contextual infor-

mation retrieval. Liu et al. [60] used rank-based system for unsupervised learning. Idrees et al.

[35] deployed composition loss to jointly learn the count, localization and density-map. HA-CCN

[95] utilized global and spatial attention to enhance useful features. However, these schemes prove

inadequate to handle extreme conditions such as noise, low illumination and resolution images.

In the audio-visual domain, Hu et al. [31] recently introduced the first-ever audio-visual crowd

dataset, DISCO, making this type of crowd counting possible. For the audio-visual people count,

how to constructively extract the audio-visual features and how to effectively fuse them together

present the key challenges.

1.5.4 Comments on Existing Methods

These methods still struggle to handle the huge crowd diversity and thus do not generalize well.

They also overestimate the cluttered background regions in the images. One major issue with the

density-map estimation methods is to find the optimal Gaussian kernel size, which depends on

many related factors. They also do not generalize well on the huge crowd-variation challenge.

On the other hand, recent multi-modal models only account for the parametric influence of audio

features on the visual ones without making full use of the audio-visual information. Therefore, we

need to address the major crowd estimation issues and challenges in this work.
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1.6 Organization

The rest of the dissertation is organized as follows. Next, we discuss five novel and different uni-

modal crowd counting architectures separately in the next three chapters in detail. Following that,

we detail our novel work on the multi-modal model design for people count in Chapter 5. Then,

Chapter 6 discusses the application of our novel crowd counting technique to the scene-text recog-

nition problem, followed by the discussion on the uni- and multi-modal crowd-counting based

future work and our work conclusion in Chapter 7. Moreover, most content of this dissertation

comes from our work as given in [79, 80, 81, 82, 83, 84].
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Chapter 2

Uni-modal and Uni-Scale PRM-based Multi-task Crowd

Counting Networks

This chapter deals with the extensive discussion related to the novel patch re-scaling module (PRM)

and three new uni-scale PRM-based crowd counting networks. Next, we state our main contribu-

tions, followed by a discussion regarding quantitative and qualitative evaluation on standard bench-

mark datasets and compare the results with the state-of-the-art methods. Cross-dataset evaluation

demonstrates the generalization capability of the proposed scheme. Most of this chapter content

has been taken from our work [82, 83].

2.1 Introduction to PRM module and Uni-scale Networks

Automated crowd counting comes up with different challenges including large perspective, huge

crowd diversity across different images, severe occlusion, and dense crowd-like complex back-

ground patterns. Recent methods mostly employ deep convolutional neural networks (CNNs) to

automate the crowd counting process. These approaches can be categorized as Detection based,

Direct regression based, and Density map estimation based methods. Detection based methods use

CNN based object detectors (e.g. Faster-RCNN [23], YOLO [76]) to detect each person in the

image. The final crowd count is the sum of all detections. This idea does not generalize well for

high-density crowd images, where detection fails due to very few pixels per head or person. Di-

rect regression based methods [33, 82] learn to directly regress crowd count from the input image.

These methods alone cannot handle huge crowd diversity and thus lack generalization. Density

map estimation based methods [85, 94, 126, 59, 103, 91, 114, 40] estimate crowd density value
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Figure 2.1: Current Direct Regression (DR) and Density-map estimation (DME) [35] based meth-
ods overestimate in case of even very small (224 × 224) size cluttered crowd-like background
regions in images, as they face difficulty in recognizing and discarding such complex patterns.

per pixel instead of the whole input image. Most current state-of-the-art methods belong to this

category due to their better and effective performance, however, limitations related to density map

estimation per pixel pose a huge challenge [75] due to large variations in crowd number across

different images.

Multi-column CNN (MCNN) model [127] is a three-column density-map estimation based

network, that uses different filter sizes in each of its columns to account for multiple scales. Each

branch is specialized in handling the respective scale. These columns are eventually concatenated

at the end to output the final crowd estimate. Similarly, another state-of-the-art model, named

Switch-CNN [85], deploys a hard switch to select one of three specialized crowd count regressors

accordingly for the input image. Each count regressor is specialized to handle and focus on respec-

tive crowd density. Non-switch and single-column based models [126] are also being designed to

solve the counting issues, but they lack the ability to generalize well on huge crowd diversity across

different images, and thus, result in either high over-estimation or under-estimation.

Another key issue with these methods is their noticeable inability and lack of focus towards

detecting and discarding any cluttered crowd-like background region or patch in the image that

may cause huge crowd over-estimation. As shown in Fig. 2.1, current methods do not detect these

224× 224 cluttered crowd-like background regions in the images and thus result in crowd over-
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estimation. This problem would scale up quickly with more such regions occurring regularly in

the images.

To address the aforementioned major issues, we propose a simple yet effective image patch

rescaling module (PRM) and three new crowd counting frameworks employing the plug-and-play

PRM module. These frameworks range from a modular approach to multi-task end-to-end net-

works. The lightweight PRM module addresses the huge crowd diversity issue efficiently and

effectively, and also appears as a better alternative to the recent computationally heavy multi-

column or multiple specialized count regressors based architectures. In the proposed frameworks,

high-frequency crowd-like background regions also get discarded that may cause huge crowd over-

estimation otherwise.

2.2 Our Main Contributions

The main contributions of this work are as follows:

• We propose a conceptually simple yet effective and plug-and-play based patch rescaling

module (PRM) to address the major huge crowd diversity issue in crowd counting problems.

• We also propose three new and independent crowd counting frameworks that utilize the

lightweight PRM module instead of computationally expensive recent multi-column or multi-

regressor based architectures.

• Extensive experiments on three benchmark datasets show that our approach outperforms

the state-of-the-art methods in terms of RMSE evaluation metric with the improvement up

to 10.4%. Cross-dataset evaluation also demonstrates the better generalization ability of

the proposed PRM module and crowd counting schemes relative to similar state-of-the-art

methods.
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(a) PRM Module

(b) Modular Scheme (CC-Mod) (c) End-to-End Networks (CC-1P, CC-2P)

Figure 2.2: (a) PRM Module. Based on the prior estimated crowd-density class (CP), the PRM
module rescales the input patch P (when CP = HC or LC) using one of its rescaling operations
(Up-scaler or Down-scaler) and generates 4 or 1 new rescaled patch(es) respecively. The MC
labeled patch bypasses any rescaling (Iso-scaler). (b) CC-Mod. In the modular crowd counting
scheme, the input patch is first classified 4-way (NC, LC, MC, HC), followed by passing through
the PRM and then through the regressor for final patch crowd count (CCP). (c) CC-1P, CC-2P.
These crowd counting networks couple the PRM module with the base network to address the huge
crowd diversity issue amid giving better performance (Architectures detailed in Figs. 2.3 and 2.4).

16



2.3 Proposed Method

Our method focuses on addressing huge crowd diversity within as well as across different images

and the presence of cluttered crowd-like background regions in these images. As shown in Fig.

2.2(a), the proposed Patch Rescaling Module (PRM) comprises of three straightforward operations

i.e. Up-scaler, Down-scaler and Iso-scaler. The input image patch uses one of these operations

to adjust its scaling accordingly, depending on its crowd density level. This lightweight rescaling

process helps in addressing the crowd diversity issue efficiently and effectively. Next, we propose

three new and different crowd counting schemes that employ the plug-and-play PRM module as

shown in Fig. 2.2. These frameworks include a modular approach (Fig. 2.2b) and two end-to-end

(Fig. 2.2c) networks. The modular framework uses the PRM block in between the independent

classification and regression modules, while end-to-end multi-task networks utilize the PRM to

facilitate the base network for better and efficient performance. Both PRM and the proposed

frameworks are detailed in the following text.

2.3.1 Patch Rescaling Module (PRM)

The PRM module, as shown in Fig. 2.2a, is used to rescale the input patch by utilizing one

of the two rescaling operations, namely Up-scaler and Down-scaler. PRM module selects the

appropriate rescaling operation based on the crowd density level (CP), which is computed prior

to the PRM module usage by the 4-way classification (no-crowd (NC), low-crowd (LC), medium-

crowd (MC), high-crowd (HC)). Crowd patches, classified as LC or HC, pass through the Down-

scaler or Up-scaler operation, respectively. The MC labeled input patch bypasses the PRM without

any rescaling (denoted by Iso-scaler). NC labeled input patch is automatically discarded without

any PRM processing as it is a background region with zero people count. Every patch, coming out

of the PRM module, will have the same fixed 224× 224 size. By using the right scale for each

input patch, the straightforward PRM module addresses the huge crowd diversity challenge and

has been used as a plug-and-play block in different new crowd counting schemes given in Sec.
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2.3.2. Each rescaling operation is detailed below.

Upscaling Operation (Up-scaler). The upscaling option is applied to the patches with high-

crowd (HC) crowd. Up-scaler divides the input patch into four 112× 112 patches, followed by

upscaling of each new patch to 224× 224 size. Intuitively, this simple operation facilitates the

counting process by further dividing and zooming-in into each sub-divided part of the highly

dense crowd patches separately. Consequently, it avoids the overestimation that occurs in com-

plex multi-column architectures and multiple specialized count regressors based methods. Thus,

this operation outputs four rescaled patches from the input patch.

Downscaling Operation (Down-scaler). The patches that are classified as low-crowd (LC)

label are subjected to downscaling operation, where the patches are first down-scaled by 2× and

then zero-padded to 224×224 before proceeding for further processing. Primarily, this operation

helps in avoiding underestimation by using smaller area for the input patch and achieves better

results without the need for any specialized or complex additional component.

Iso-scaling block. The image patches that are labeled as medium-density (MC) class do not

require any special attention as given to LC or HC based patches, because the deep CNN based

crowd counting models can handle these cases effectively without using any upscaling or down-

scaling operation. Thus, they are directly forwarded to the next stage for crowd estimation.

2.3.2 PRM based Crowd Counting Frameworks

In this section, we discuss three independent proposed crowd counting schemes, ranging from a

modular framework to two end-to-end multi-task networks. These methods address the huge crowd

diversity using the PRM module as well as discard any cluttered background regions in the images.

In each scheme, the input image is divided into 224× 224 non-overlapping patches. Each patch

then passes through that specific scheme for patch crowd count estimate. The final crowd count of

the image is obtained by summing all its patches count. Each crowd counting scheme is discussed

in the following subsections.
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2.3.2.1 Modular Crowd Counting Scheme (CC-Mod)

The modular crowd counting framework (CC-Mod), as shown in Fig. 2.2b, consists of three main

components, namely Deep CNN based 4-way classifier, PRM module, and crowd count regressor.

Input image gets divided into 224 x 224 size non-overlapping patches. Each patch is then fed

to a 4-way classifier that categorizes the input patch to its appropriate crowd-density label (NC,

LC, MC, HC). Based on the assigned class label, each patch is rescaled accordingly using the

PRM module before proceeding to the count regressor for the patch-wise crowd estimate. Image

crowd count is finally obtained by summing all its crowd patches count. Each component has been

detailed as follows.

Crowd Density Classifier. The goal of this module is to classify the input (224×224) image

patch into one of the four crowd density labels, namely no-crowd (NC), low-crowd (LC), medium-

crowd (MC), and high-crowd (HC) crowd. The definitions of these labels are given in the next

paragraph. Based on the assigned class label, each patch will then be routed to the PRB module

for the rescaling operation. The NC labeled patches are completely discarded without any further

processing. Thus, using this specialized deep CNN classifier, we identify and discard the cluttered

crowd-like background patches, which may result in huge accumulated crowd overestimation oth-

erwise.

Crowd-density class labels definitions. Crowd density classifier requires the definitions of

four class labels (NC, LC, MC, HC) to train and learn the 4-way classification. Since each labeled

benchmark dataset contains the people localization information in the form of (x,y) as the center

of each person’s head, we utilize this information to define the class labels and generate train-

ing patches for each class label. The ground truth crowd-density label (CP(gt)) for the 224× 224

training image patch P is assigned as follows:

19



CP(gt) =



NC cgt = 0

LC 0 < cgt ≤ 0.05 * cmax

MC 0.05 * cmax < cgt ≤ 0.2 * cmax

HC 0.2 * cmax < cgt

(2.1)

where cgt denotes the ground truth people count for the image patch X , cmax stands for the possible

maximum ground truth people count in any 224× 224 image patch of this benchmark dataset.

Image patch, containing at most 5% of the maximum ground truth people count (and non-zero)

is assigned with low-crowd (LC) crowd label. Similarly, a patch with actual count between 5 to

20% (including 20%) is classified with MC label, whereas patches containing more than 20% of

the maximum possible crowd count or no crowd at all are given HC or NC labels respectively.

In this way, a total of 90,000 patches (22,500 per class) are being generated for the classifier

training during each dataset experiment separately. In all proposed schemes, we use the same class

definitions for the 4-way classification.

Classifier and Crowd Count Regressor details. We use customized DenseNet-121 [33] based

architecture as the 4-way crowd-density classifier. Empirically, we found that using only the first

three dense blocks give almost the same and consistent performance for this 4-way classification

task, instead of using default four dense blocks in DenseNet-121. Consequently, this reduces the

learnable parameters by a huge margin (6.95M to 4.80M). At the end of the third dense block, the

classification layer is composed of 7×7 global average pooling followed by the 4D fully connected

layer with a softmax 4-way classification (NC, LC, MC, HC) and cross-entropy loss.

The regressor is similar to the original DenseNet-121 architecture except that it has {6,12,18,12}

sets in four dense blocks respectively instead of {6,12,24,16}. This customization significantly

reduces the model parameters (6.95M to 5.05M), while performing reasonably well. In addition,

the classification layer has been replaced with a single neuron to directly regress the crowd count.

The mean Squared Error (MSE) has been used as the loss function for the count regressor cr,
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Figure 2.3: The proposed CC-2P architecture. The input patch P, classified as either HC or LC
during the first-pass, passes through the base network again (second-pass) after the required PRM
rescaling operation. Final patch count (CCP) is the average of both passes crowd estimates. MC
labeled input patch skips the second-pass without any PRM usage, and outputs the final first-pass
Crowd Count (CCP).

defined as:

Losscr =
1
n

n

∑
k=1

(F(xk,Θ)− yk)
2 (2.2)

where n denotes the training patches per batch, yk is the actual crowd count for the input image

patch xk, and F is the mapping function that learns the input patch xk mapping to the crowd count

with weights parameters Θ.

2.3.2.2 Two-Pass Crowd Counting Network (CC-2P)

CC-2P, as shown in Fig. 2.3, is a multi-task 4-way classification and regression based network,

that employs the PRM module. The input patch goes through the base network, consisting of four

dense blocks (DB1, DB2, DB3, DB4), in the first pass to yield the crowd density class label as well

as crowd number estimate. The patches, labeled as LC or HC label, proceed to the PRM module

for required rescaling operation. The resultant new patch(es) then go through the base network for

crowd count estimate in the second pass. Let P be the original input patch and first-pass class label

(CP) as LC or HC, then the final crowd count (CCP) estimate for P is the average of the first-pass

( f p) and the second-pass (sp) crowd estimates as follows.
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CCp =


cc f p + ccsp

2 Cp = LC

cc f p+(ccu1+ccu2+ccu3+ccu4)sp
2 Cp = HC

(2.3)

Since the PRM produces four new upscaled patches (u1,u2,u3,u4) for the input patch P when

Cp = HC, therefore second-pass crowd count is the sum of these patches for this case. These four

patches go through the network one by one during the second-pass to estimate their corresponding

crowd counts. Input patch P that is labeled as MC in the first-pass, skips the second-pass as

the PRM module has no effect on such patches (no rescaling). Also, NC labeled input patch is

discarded without any further processing irrespective of their crowd estimate.

Network Details. We use customized DenseNet-121 [33] as our base network. Empirically,

it has been observed that fewer sets of (1 × 1) and (3 × 3) layers in the Densenet-121 deeper

dense blocks (DB3 and DB4) give almost the same and consistent performance for this problem

amid reducing model parameters by a significant margin (6.95M to 5.05M). Consequently, we

use {6,12,18,12} sets instead of {6,12,24,16} in the four dense blocks respectively, which reduces

the 121 layers deep Densenet to 101 layers. Transition layers (T L1,T L2,T L3) connect the dense

blocks and adjust the feature maps size for the next dense block accordingly, as given in [33].

At the end of the base network, the final fully connected (FC) layer outputs the softmax based

4-way classification and regression based crowd count value. Multi-task loss (Losstotal) of CC-2P

is defined as follows.

Losstotal = Lreg + Lclass (2.4)

where Lreg is the MSE loss as defined in Eq. 2.2, Lclass is the cross-entropy loss for the softmax

based 4-way labeling.
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Figure 2.4: The proposed CC-1P architecture branches-out the dense block (DB2) output for the 4-
way classification (CP). The input patch P then passes through the PRM for any required rescaling.
Resultant patch(es) then go though the C-stem block, followed by the channel- wise concatenation
with the transition layer (T L2) output channels. Remaining processing finally yields the patch
crowd count (CCP).

2.3.2.3 Single-Pass Crowd Counting Network (CC-1P)

The multi-task single-pass network, as shown in Fig. 2.4, branches out the dense block 2 (DB2)

output for the 4-way classification (NC, LC, MC, HC) of the input patch. Based on the assigned

class label, the input patch P passes through the PRM module for any required rescaling. Patch(es),

coming out of the PRM, proceed to the DB3 concatenation stem (C-stem) for the extraction of their

initial feature maps that are eventually concatenated with the second transition layer (TL2) output

feature maps to serve as the input to the DB3 Finally, the global average pooling is being done on

DB4 output channels followed by a single neuron to directly regress the input patch crowd count.

The configurations of classification head and C-stem are shown in Table 2.1. Base network is the

same as used in CC-2P except that the compression factor (θ ) for second transition layer (TL2)

has been set to 0.25 (instead of standard DenseNet-121 value of 0.5) to yield the same number of

channels (256) after the concatenation process. Similar to the CC-2P scheme, the PRM generated

four patches (when Cp = HC) go through the C-stem and subsequent blocks one by one to yield

their corresponding crowd counts that are summed to output the final crowd estimate for the input

patch P in this case. Empirically, it has been observed that the branching-out of the classification

head after the DB2 achieves better results as compared to the same branching being deployed after
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Layer Output Size Filters (F)
Classification Head

512×28×28
64×28×28 (1×1) conv, 64F
64×14×14 (2×2) Avg Pooling, stride 2

32×7×7 (3×3) conv, stride 2, padding 1, 32F
4D FC, softmax -

DB3 Concatenation stem block (C-stem)
1×224×224

conv1 64×112×112 (3×3) conv, stride 2, padding 1, 64F
conv2 32×56×56 (3×3) conv, stride 2, padding 1, 64F

32×28×28 (2×2) Avg Pooling, stride 2

DB3 128×28×28
[

1×1 conv
3×3 conv

]
×3

128×14×14 (2×2) Avg Pooling, stride 2

Table 2.1: Configurations of the CC-1P Classification Head and the C-stem block. Each conv
represents the BN-ReLU-Convolution sequence [33].

other dense blocks as detailed in Sec. 2.5.4.

Proposed Approach and the Switch-CNN comparison. Switch-CNN [85], as detailed in

Sec. 2.1, also classifies the input patch into the appropriate density level, followed by the crowd

estimation using one of three specialized regressors. However, we approach this task in a totally

different way by just using the straightforward plug-and-play PRM module with no learnable pa-

rameters and employing only one regressor or the base network. Whereas, the Switch-CNN uses

complex coupling of the classifier with three specialized regressors. Consequently, the proposed

frameworks (CC-Mod, CC-1P, CC-2P) have fewer model parameters (9.85M,6.7M,5.05M, re-

spectively) as compared to the Switch-CNN (15.1M), and achieve better performance (see Sec.

2.5).
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2.4 Evaluation and Training Details

As per the standard crowd counting evaluation criteria, Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) metrics have been used:

MAE =
1
N

N

∑
k=1

|Ck −Ĉk|,RMSE =

√√√√ 1
N

N

∑
k=1

(Ck −Ĉk)2 (2.5)

where N indicates the total number of test images in the given benchmark dataset, and Ck, Ĉk

represent the actual and the estimated counts respectively for test image k.

Training Details. In the end-to-end networks, the modular classifier and the crowd count re-

gressor were trained separately using 90,000 patches each with mixed crowd numbers and original

patch sizes of 112×112, 224×224, and 448×448. We used batch size of 16, stochastic gradient

descent (SGD) as the optimizer and trains for 75 epochs with multi-step learning rate that starts at

0.001 and decreases to half each time after 25 and 50 epochs. Other parameters remain the same as

for orignial DenseNet [33]. As per standard, 10% training data has been used for model validation.

2.5 Experimental Results

In this section, we report results obtained from extensive experiments on three diverse benchmark

datasets: ShanghaiTech [127], UCF-QNRF [35], and AHU-Crowd [32]. These datasets vary dras-

tically from each other in terms of crowd diversity range, image resolution, and complex cluttered

background patterns. First, we analyze standard quantitative experimental results and ablation

study on these datasets, followed by the cross-dataset evaluation. In the end, we analyze some

qualitative results.

2.5.1 ShanghaiTech Dataset Experiments

The ShanghaiTech Part-A [127] dataset consists of diverse 482 images, with a predefined split of

300 training and 182 testing images. The proposed PRM based schemes are compared with the
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ShanghaiTech UCF-QNRF
Method MAE RMSE MAE RMSE

MCNN [127] 110.2 173.2 277 426
Cascaded-MTL [94] 101.3 152.4 252 514

Switch-CNN [85] 90.4 135.0 228 445
SaCNN [126] 86.8 139.2 - -
IG-CNN [3] 72.5 118.2 - -
ACSCP [87] 75.7 102.7 - -
CSRNet [54] 68.2 115.0 - -

CL[35] - - 132 191
CFF [91] 65.2 109.4 93.8 146.5

RRSP [103] 63.1 96.2 - -
CAN [59] 62.3 100.0 107 183

TEDNet [40] 64.2 109.1 113 188
L2SM [115] 64.2 98.4 104.7 173.6

Densenet121[33] 93 139 167 229
CC-Mod (ours) 73.8 113.2 107.8 171.2
CC-2P (ours) 67.8 86.2 94.5 141.9
CC-1P (ours) 69.1 109.5 97.3 153

(CC-Mod/CC-2P/CC-1P) w/o PRM 93.8 139.2 168 230

Table 2.2: ShanghaiTech [127] and UCF-QNRF [35] datasets experiments and ablation study. Our
PRM based approach (CC-2P) outperforms the state-of-the-art methods under the RMSE metric
while giving competitive performance on MAE. Other PRM based proposed methods (CC-Mod
and CC-1P) also give reasonable results. During the ablation study (last row), all proposed schemes
give worse results after removing the PRM module, thus, indicating the quantitative importance of
the proposed PRM.

state-of-the-art methods as shown in Table 2.2, where our approach (CC-2P) outperforms others

under the RMSE evaluation metric with a significant improvement of 10.40% (96.2 to 86.2) and

also give reasonable performance on MAE. The smallest RMSE value also indicates the lowest

variance of our approach as compared with the other methods. Other proposed schemes (CC-Mod,

CC-1P) also give comparable results in comparison.

To further evaluate the proposed methods, we removed the PRM module from each proposed

scheme separately during the ablation study. After the PRM module removal, all three proposed

schemes just become the same customized DenseNet based crowd count regressor (the base net-

work), thus giving the same ablation performance as indicated by the last row of Table 2.2. The
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Method MAE RMSE
Haar Wavelet [71] 409.0 -

DPM [20] 395.4 -
BOW–SVM [18] 218.8 -

Ridge Regression [12] 207.4 -
Hu et al. [32] 137 -
DSRM [120] 81 129

Densenet121[33] 88.2 126.1
CC-Mod (ours) 75.1 121.2
CC-2P (ours) 66.6 101.9
CC-1P (ours) 70.3 107.2

(CC-Mod / CC-2P / CC-1P) w/o PRM 89.9 127

Table 2.3: Our approach outperforms other models under all evaluation metrics on AHU-Crowd
dataset. Ablation study (last row) also demonstrates the quantitative importance of the PRM mod-
ule.

ablation results show that the performance decreases dramatically (MAE: 27.71%, RMSE: 38.07%

error increase for CC-2P) without the PRM module, hence, quantifying the importance and effec-

tiveness of the proposed PRM module.

2.5.2 UCF-QNRF Dataset Experiments

UCF-QNRF [35] dataset is the most diverse and challenging crowd counting benchmark dataset

to date due to higher image resolutions, huge crowd diversity across different images and complex

cluttered regions. It consists of 1,535 images with 1,251,642 annotations in total and a predefined

training/testing split of 1,201/334 images, respectively. Also, the image resolution varies greatly

from as low as 300×377 to as high as 6666×9999. As compared with the state-of-the-art models,

our CC-2P approach outperforms them under RMSE evaluation metric while performing reason-

ably closer in terms of RMSE, as shown in Table 2.2. Our method shows a significant improvement

as RMSE drops by 5.12% (146.5 to 139). The ablation study (last row of Table 2.2), same as in

Sec. 2.5.1, quantifies the importance of the PRM module (MAE: 43.75%, RMSE: 38.3% error

increase for CC-2P) after removing it from the proposed schemes.
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ShanghaiTech UCF-QNRF
Method MAE RMSE MAE RMSE

CC-Mod
Using VGG-16 79.3 125.6 128 181
Using VGG-19 78.9 124.1 122 179

Using ResNet-50 77.2 121.2 120 177
Using ResNet-101 77.0 120.5 121 176

Customized DenseNet-121 (ours) 73.8 113.2 107.8 171.2
CC-1P Branching-out

After DB1 78.3 123.2 128 181
After DB2 (ours) 69.1 109.5 97.3 153

After DB3 73.2 116.3 120 177
After DB4 79.1 124.2 121 176

Table 2.4: Ablation Study on the CC-Mod architecture choice and the CC-1P Branching-out effect.
The results justify our use of customized DenseNet-121 architecture as the 4-way classifier and the
count regressor in the CC-Mod framework, and also our DB2 based branching-out selection of the
Classification-Head in the CC-1P model.

2.5.3 AHU-Crowd Dataset Experiments

AHU-Crowd dataset [32] consists of 107 images and as per standard convention, we perform 5-

fold cross-validation. As shown in Table 2.3, comparison based results show that our methods

outperform other state-of-the-arts in terms of all evaluation criteria. Ablation study (last row of

Table 2.3), same as in Sec. 2.5.1, demonstrates the importance and effectiveness of the PRM

module.

2.5.4 Ablation Study on CC-Mod Architecture Choice and CC-1P Branching-

out Effect

In this experiment, we first explore different state-of-the-art architectures that can be used as the

CC-mod classifier and the regressor. As shown in Table 2.4, our customized DenseNet-121 choice

performs the best in all cases. All other architectures are adapted for this ablation study as de-

scribed in Sec. 5.6 of [85]. Next, we analyze the possible branching-out of the classification-head

after each dense block (DB1, DB2, DB3, DB4) separately in CC-1P. Again, Table 2.4 justifies our
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Method MAE RMSE
Cascaded-mtl [94] 308 478
Switch-CNN [85] 301 457
CC-Mod (ours) 251 333
CC-2P (ours) 219 305
CC-1P (ours) 227 318

Table 2.5: Cross-dataset evaluation. Models are trained using ShanghaiTech Part A images patches
and tested on the UCF-QNRF dataset. Results show the generalization ability of the proposed
method.

DB2 based branching-out in CC-1P with least error.

2.5.5 Cross-dataset Evaluation

We perform cross-dataset evaluation and compare the results with the state-of-the-art models. Each

model is trained on the ShanghaiTech part-A training dataset and evaluated on UCF-QNRF dataset

testing images. Results are shown in Table 2.5, where we compare our method with two state-

of-the-art models. These results demonstrate that our approach is much more reliable with better

generalization ability as it yields the best performance with a decrease in MAE (from 301 to 219)

and RMSE (from 457 to 305).

2.5.6 PRM Rescaling Operations Usage and Background Detection Analysis

Here, we make a quantitative analysis of each PRM rescaling option usage as well as the amount

of background (NC) patches being detected and discarded by the proposed scheme (CC-2P) during

the test on three benchmark datasets. In all benchmark evaluations, either PRM rescaling option

(HC or LC) has been used for at least 14.25% and as high as 29.4% of the test images patches as

shown in Fig. 2.5. Thus, the PRM have been utilized quite frequently and played an imperative

role in enhancing the overall performance. Similarly, 36.2%, 30.9% and 32% (on average) of test

image patches in ShanghaiTech, UCF-QNRF and AHU-Crowd datasets, respectively, have been

detected as no-crowd (NC) and discarded after classification. These background patches could
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Figure 2.5: 4-way Classification (CP) results on each benchmark dataset reveal the frequency and
importance of the PRM rescaling operations (as applied on LC and HC labeled patches). It also
indicates that a large number of patches have been classified as no-crowd (NC) and thus discarded
to avoid overestimation.

have created a great crowd overestimation otherwise as described in Sec. 2.1.

2.5.7 Qualitative Results

Some qualitative results have been shown in Fig. 2.6, where the first row demonstrates the crowd

count results on actual test images. As compared to Direct regression (DR) [33] and Density map

estimation (DME) based methods, it is evident that our approach yields more accurate and reliable

results. Sample crowd-density classification results, as shown in the second and third rows of the

same figure, demonstrate the effectiveness of the 4-way classification, which is crucial in routing

the test patch to the correct PRM rescaling operation as well as in detecting any background image

patch.
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GT=307, DR=405
Ours=306, DME[126]=451

GT=961, DR=1016
Ours=949, DME[126]=1051

GT=236, DR=324
Ours=246, DME[126]=299

GT=823, DR=948
Ours=833, DME[126]=913

NC NC LC LC

MC MC HC HC

Figure 2.6: Qualitative results. First row shows the visual results from the actual test images.
As compared with Direct Regression (DR) [33] and density-map estimation (DME) methods, our
approach yields closer to the ground truth (GT) results. Second and third rows show our 4-way
classification results, where it labels these complex patches correctly, thus, helping in routing the
patches to the correct PRM rescaling option and also discards any no-crowd patch.
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2.6 Conclusion

In this chapter, we have presented an effective PRM module and three independent crowd counting

frameworks. The proposed frameworks employ straightforward PRM rescaling operations instead

of complex multi-column or multiple specialized crowd count regressors based architectures. The

experimental results show that the proposed approach outperforms the state-of-the-art methods in

terms of the RMSE metric and achieves competing performance in the MAE metric. The cross-

dataset examination also indicates the great generalization ability of our method.
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Chapter 3

Multi-Resolution Fusion and Multi-scale Input Priors Based

Crowd Counting (Uni-Modal)

In this chapter, we discuss the first multi-scale crowd counting network belonging to the uni-

modal category. The state-of-the-art patch rescaling module (PRM) based approaches prove to be

very effective in improving the crowd counting performance. However, the PRM module requires

an additional and compromising crowd-density classification process. To address these issues and

challenges, this work proposes a new multi-resolution fusion based end-to-end crowd counting net-

work. It employs three deep-layers based columns/branches, each catering the respective crowd-

density scale. These columns regularly fuse (share) the information with each other. The network

is divided into three phases with each phase containing one or more columns. Three input priors

are introduced to serve as an efficient and effective alternative to the PRM module, without requir-

ing any additional classification operations. Along with the final crowd count regression head, the

network also contains three auxiliary crowd estimation regression heads, which are strategically

placed at each phase end to boost the overall performance. Comprehensive experiments on three

benchmark datasets demonstrate that the proposed approach outperforms all the state-of-the-art

models under the RMSE evaluation metric. The proposed approach also has better generalization

capability with the best results during the cross-dataset experiments. First, we discuss the intro-

duction and motivation, proposed network details, followed by experimental evaluation including

the cross-dataset evaluation. Most content of this chapter comes from our paper [81].
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3.1 Introduction

Multi-column or multi-regressor CNN based architectures [127, 85, 75, 94] have proved to be very

effective for crowd counting tasks. MCNN [127] is a state-of-the-art three-column density-map

estimation based end-to-end crowd counting network, where each CNN based column specializes

in handling the specific crowd-density level. At the end of this network, all columns are merged

together to yield the crowd estimate after the remaining processing. Similarly, multi-column based

architectures [85, 58] utilize multiple specialized crowd count regressors to cope with multiple

crowd-density scales separately. For example, Switch-CNN [85], a density-map estimation based

network, consists of a CNN based switch classifier that routes the input image or patch to one of

three crowd count regressors, where each regressor deals with a specific crowd level. In addition,

many single-column or single-regressor based architectures [54, 86] have also been proposed to

address the crowd counting issues and challenges. These methods produce promising results, but

still lack the generalization ability for crowd estimation, ranging from low to high crowd-density.

Recently, Sajid et al. [82, 83] observed that suitable rescaling (down-, no-, or up-scaling) of

the input image or patch, according to its crowd density level (low-, medium-, or high-crowd),

gives more effective results as compared to the multi-column or multi-regressor based methods.

Based on this observation, they also designed a patch rescaling module (PRM) [83] that rescales

the input image or patch accordingly based on its crowd-density class label. Although the PRM

based single-column proposed schemes [83] empirically prove their observation to be imperative

and effective, the PRM module does not fully capitalize on it and thus limits the efficacy of this

observation. First, it requires the crowd-density classification label of the original input patch. This

additional classification process comes up with its own inaccuracies [82, 83] that compromises the

subsequent crowd counting process. Second, the PRM module selects only one of three available

recalling operations (down-, no-, or up-scaling) for any given input patch. This limits the overall

effectiveness and improvement of the PRM module and only utilizes the deployed observation par-

tially. Contrary to only using the single rescaling for the input patch, we empirically observed that

using all three rescaled versions of the input patch with feature-level fusion or sharing gives much
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better performance. Consequently, it also eliminates the need for any crowd-density classification

process for the original input patch. To this end, we aim to achieve the following two objectives in

this work:

• Better generalization ability: Design a multi-column crowd counting method with better

generalization ability towards huge crowd variations.

• Effective input priors: Utilize the input patch rescaling based effective observation [82, 83]

(as discussed above) without performing any expensive and compromising crowd-density

classification process, and also use all three crowd-density levels (low-, medium, and high-

crowd) in a more effective manner than the PRM module [83].

Thus, we propose a new multi-resolution feature-level fusion based end-to-end crowd counting

network to achieve the above objectives amid addressing the major crowd counting challenges.

The proposed approach works at multiple scales via multi-columns, where each column primarily

focuses on the respective scale (low-, medium-, or high-crowd), as shown in Fig. 3.1. Unlike other

state-of-the-art multi-scale or multi-column based methods, the columns also fuse and share the

information with each other at a regular basis after every few deep layers (phase). Each column

also takes the suitably rescaled version of the original input patch as its input prior without any

classification process. Inspired by the success of high-resolution networks [99, 105], each col-

umn also serves as a high-resolution sub-network, where the resolution is maintained the same as

its input throughout the column. These repetitive multi-scale fusions, coupled with column-wise

rescaled input priors and high-resolution maintenance, prove to be more effective in generalizing

towards huge crowd variation issue (Objective # 1) in comparison to recent state-of-the-art crowd

counting methods as shown in the experiments section 3.5. In addition, the simple yet effective

column-wise input priors inclusion fulfills our objective # 2 without using any compromising and

extra crowd-density classification process.
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Figure 3.1: The proposed network. The original 128×128 input patch (I2 or P) is used to produce
the new up-scaled (I1) and down-scaled (I3) input priors, which go through their respective stems
(stem1,stem2,stem3). The resultant initial channels (IC1, IC2, IC3) then pass through the phase-
based main network, containing three deep columns/branches with the residual modules (RM).
Multi-resolution fusion regularly occurs between these columns, followed by passing through the
auxiliary (RH1,RH2,RH3) and the final (RH f inal) crowd regression heads to yield the respective
crowd counts (ccp(1),ccp(2),ccp(3), and cc f inal). The final crowd count for the input patch (I2) is
the weighted average of these crowd estimates. The MN maintains the channels (C) resolution
throughout each column. (In this chapter, we used both terms (I2 and P) interchangeably for the
same original input patch. Similarly, multi-scale and multi-resolution fusion are interchangeable
here.)
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3.2 Our Contributions

The contributions of this chapter mainly include:

• We propose a new multi-resolution feature-level fusion based end-to-end crowd counting

approach for still images that effectively deals with significant variations of crowd-density,

lighting conditions, and large perspective.

• We propose an alternative patch rescaling module by more effectively using the input pri-

ors. Unlike the PRM [83], the proposed module fully utilizes all three crowd-density levels

without requiring any compromising or additional crowd-density classification process.

• Quantitative experiments demonstrate that the proposed approach outperforms the state-of-

the-art methods, including the PRM based schemes, by a large margin with up to 10% im-

provements.

3.3 Proposed Approach

The chapter proposes a multi-column and multi-resolution fusion based end-to-end crowd counting

network to achieve the two set objectives in Sec. 3.1, amid addressing the major crowd counting

challenges including huge crowd variation in and across different images, large perspective, and

severe occlusions. The proposed scheme is shown in Fig. 3.1, where the input image is first divided

into 128× 128 non-overlapping patches. Each resultant patch then goes through the proposed

network for the patch-wise crowd count. Finally, the image crowd estimate is computed by the sum

of the crowd count of all patches. The 128×128 input patch is used to generate the new 256×256

and 64× 64 size input priors by 2× times up- and down-scaling, respectively. These multi-scale

input priors pass through the respective stems (Stem1,Stem2,Stem3) to generate three separate

initial channels (IC1, IC2, IC3), which act as the corresponding input to three columns/branches in

the main network (MN). The MN regularly fuses feature maps in between these branches. At the
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Name Output size Filters (F) Operation
Stem1

I1 3×256×256
64×128×128 (3×3) conv, stride 2, padding 1, 64F
64×64×64 (3×3) conv, stride 2, padding 1, 64F

IC1 256×64×64 (1×1) conv, stride 1, padding 0, 256F
Stem2

I2 3×128×128
64×64×64 (3×3) conv, stride 2, padding 1, 64F

IC2 64×32×32 (3×3) conv, stride 2, padding 1, 64F
Stem3

I3 3×64×64
64×32×32 (3×3) conv, stride 2, padding 1, 64F

IC3 128×16×16 (3×3) conv, stride 2, padding 1, 128F

Table 3.1: Configurations of the Stems. Each conv operation denotes the Convolution-BN-ReLU
series.

end of the main network, the resultant feature maps from three branches pass through the final

regression head (RH f inal) to yield the input patch crowd estimate. The MN also outputs into three

auxiliary crowd estimating regression heads (RH1, RH2, RH3) that helps in improving the input

patch final crowd count. In the following, we will discuss three main components in detail.

3.3.1 Input priors and respective stems

We up- and down-scale the original 128× 128 size input patch (I2 or P) by 2× to generate its

rescaled versions (256×256 and 64×64 respectively). These input priors (I1, I2, I3) pass through

their respective stems (Stem1, Stem2, Stem3) to produce initial feature channels (IC1, IC2, IC3).

These stems, as shown in Table 3.1, also decrease the input priors resolution to 1/4, and the re-

sultant initial feature maps resolution becomes half in the subsequent lower column. The upscaled

input prior (I1) helps in handling highly dense crowd regions by zooming in and observing the orig-

inal input (I2) in detail to avoid huge crowd under-estimation. Similarly, the input prior (I3) uses a

smaller scale, especially helpful for the low-crowd regions in the images that may otherwise cause

significant crowd over-estimation. Empirically, it has been observed that coupling these simple yet
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Figure 3.2: The Residual Module (RM) consists of either only 2- or 3-layers [26] based four
residual units (RU).

effective rescaled input priors (I1, I3) with the original input (I2) yields better crowd estimates, and

consequently avoid huge crowd under- or over-estimation, as shown in the ablation study in Sec.

3.5.5.

3.3.2 Main Network (MN)

The main network is composed of three deep columns/branches, each with its own input prior

feature maps, and also caters the respective crowd-density scale. The main network is divided into

three phases from left to right, where each phase consists of one or more columns/branches. The

total number of columns in a phase is equal to its phase number. All branches in a phase fuse

feature maps with each other after each Residual Module (RM). At the end of each phase, the MN

also feeds its lowest-resolution output into the auxiliary crowd regression heads (RH1,RH2,RH3),

as detailed in the next subsection 3.3.3. Each branch in the main network maintains its original

input resolution throughout the branch, unlike other state-of-the-art multi-scale crowd estimation

methods. The lower columns resolution and total channels in any phase depend on the highest-
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resolution branch (i = 1). Let C1 and R1 be the total channels and their resolution respectively in

the highest-resolution column. Then, the remaining columns (i = 2,3) follow the below principle

for their Ci and Ri in a given phase [99, 105].

Ci = 2Ci−1,Ri =
Ri−1

2
(3.1)

Residual Module: It consists of four residual units, where each unit is formed by either only

2-layer or 3-layer based residual block [26], as shown in Fig. 3.2. The 2-layer based residual block

[26] contains two 3×3 convolution layers. Similarly, the 3-layer residual block [26] starts with a

bottleneck layer, followed by one 3×3 convolution layer and a bottleneck layer. Each convolution

operation in these units is followed by the batch Normalization (BN) [36] and the nonlinear ReLU

[69] activation. Phase-1 uses the 2-layer based residual unit, whereas Phase-2 and 3 deploy the

3-layer based residual unit. The number of residual modules in each column per phase serves as

a hyperparameter and discussed in ablation study in Sec. 3.5.4. Moreover, by the network design,

total residual modules in each column of a specific phase remain the same.

Recurring Multi-resolution Fusions: The primary purpose of the multi-resolution fusion is to

exchange the information between different resolutions/columns, so as to enhance the generaliza-

tion ability of the proposed scheme towards huge crowd diversity in and across different images.

We utilize one or more 3× 3 convolution operations to fuse higher-resolution feature maps into

the lower-level channels. To fuse the lower-resolution feature maps into the higher-level channels,

bilinear upsampling followed by the bottleneck layer (to adjust the number of channels) have been

deployed. Let Chi be the fusion source channels from column at ith index (i = 1,2 or 3), Ch j be

the fusion target column at index j ( j = 1,2 or 3), and f (.) be the transformation function. If i < j,

then f (Chi) downsamples the Chi channels by 2( j − i) times via ( j − 1) stride-2 3× 3 convolu-

tion(s). For example, fusing column-1 channels (Ch1) into column-2 channels (Ch2) first requires

one stride-2 3× 3 convolution ( f (Ch1)) for 2× downsampling. Similarly, Ch1 fusion into Ch3

requires 2 stride-2 3×3 convolutions for 4× downsampling before the fusion operation. If i = j,
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then f (Chi) = Chi, i.e., no transformation is done. If i > j, then f (Chi) transformation upscales

the Chi using the bilinear upsampling, followed by the bottleneck layer to adjust the number of

channels accordingly before the summation-based fusion process. Each convolution operation is

followed by the Batch Normalization (BN) [36] and the nonlinear ReLU activation [69].

Output Size Filters (F) Operation
v1 (Highest-resolution)

32×64×64
64×32×32 (3×3) conv, stride 2, padding 1, 64F
64×16×16 (3×3) conv, stride 2, padding 1, 64F
64×8×8 (2×2) Avg Pooling, stride 2
1024D, FC -

1D, FC (single neuron) -
v2 (Middle-column)

64×32×32
64×32×32 (1×1) conv, stride 1, padding 0, 64F

Rest continues as in v1 above
v3 (Lowest-resolution)

128×16×16
64×16×16 (1×1) conv, stride 1, padding 0, 64F

Rest continues as in v1 above
RH1 Configuration

64×32×32
64×16×16 (3×3) conv, stride 2, padding 1, 64F

Rest continues as in v1 above
RH2 and RH3 Configuration

128×16×16
64×8×8 (3×3) conv, stride 2, padding 1, 64F

Rest continues as in v1 above

Table 3.2: Standalone single-column output based RH f inal head versions (v1, v2, v3) and Auxil-
iary Crowd Regression Heads (RH1,RH2,RH3) configurations. Each conv operation denotes the
Convolution-BN-ReLU sequence. These configurations mainly consist of several conv layers fol-
lowed by the global average pooling and one or more fully connected (FC) layers to finally yield
the crowd estimate (single neuron).

41



(a) Concatenation-based (v4)

(b) Summation-based (v5)

Figure 3.3: Concatenation-based crowd regression head (v4) concatenates the lower-resolutions
with the highest-level channels using the bilinear upsampling, whereas the summation-based head
(v5) adds the higher-level channels into the lowest-resolution feature maps, before proceeding
through the several deep layers to finally yield the crowd estimate (cc f inal) [99, 105].

3.3.3 Crowd Regression Heads

The proposed approach contains three phase-wise crowd regression heads (RH1,RH2,RH3) and the

final regression head (RH f inal).

Phase-wise Regression Heads: One of the primary purpose of phase based organization of

the main network is to introduce auxiliary crowd regression heads (RH1,RH2,RH3) at the end of

each phase. The last lowest-resolution output of each phase serves as the input to its respective

regression head. These heads mainly consist of several convolution based deep layers, followed

by optional average pooling operation and one or more fully connected (FC) layers as detailed in

Table 3.2. Finally, the single neuron (1D,FC) at the end of each head gives the corresponding

crowd counts (ccP(1),ccP(2),ccP(3)) for the input patch (P).
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Final Regression Head (RH f inal): Phase-3 outputs three blocks of feature maps, each from

the respective column with varying resolution. These blocks have been exploited in different ways

for possible and effective RH f inal head configuration, as discussed below.

Standalone Single-Column Output based (v1,v2,v3). Here, we only use one of three phase-

3 outputs for the RH f inal configuration [99, 105]. Subsequent configurations are shown in Table

3.2, and named as v1 (highest-resolution), v2 (middle-column), and v3 (lowest-resolution), respec-

tively. These representations consist of several deep layers, followed by the 1024 dimensional fully

connected (FC) layer and the final single neuron to directly regress the crowd count.

Concatenation-based (v4). The lower-resolution feature maps concatenate at the highest-

resolution branch, with configuration shown in Fig. 3.3(a) [99, 105].

Summation-based (v5). The higher-level feature maps are summed up into the subsequent

lower resolution feature maps after respective downscaling, as shown in Fig. 3.3(b) [99, 105].

Employing one of the above configurations, the RH f inal yields its crowd count (cc f inal) for the

input patch P. The final crowd count (CCP) for the original input patch P is computed using all

regression heads weighted crowd estimates as follows:

CCP = w∗ ccP(1)+ x∗ ccP(2)+ y∗ ccP(3)+ z∗ cc f inal (3.2)

Where w = x = y = 0.1 and z = 0.7. The mean squared error (MSE) has been used as the loss

function for each of the four regression heads (RH), given as follows:

LRH =
1
N

N

∑
i=1

(F(xi,Θ)− yi)
2 (3.3)

where N represents the total training patches per batch, yi denotes the ground truth crowd count

for the input image patch xi, and F(.) represents the transformation function that learns the xi to

crowd count mapping with learnable weights Θ. Finally, the total loss for the input patch P is the

weighted accumulation of all four regression head losses as below:
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LP = w∗LRH1 + x∗LRH2 + y∗LRH3 + z∗L f inal (3.4)

3.4 Implementation Details

We employ the following two standard metrics, namely Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE), for the evaluation and comparison of the proposed scheme with other

state-of-the-art methods.

MAE =
1
T

T

∑
t=1

|CCt − ˆCCt |,RMSE =

√
1
T

T

∑
t=1

(CCt − ˆCCt)2 (3.5)

where T represents the total test images in a dataset, and CCt and ˆCCt denote the actual and esti-

mated crowd counts respectively for the test image t.

Training Details: We randomly extract 60,000 patches of 256×256, 128×128, and 64×64

sizes with varying crowd number from the training images. Horizontal flip based data augmenta-

tion is then used to double the training samples quantity. We trained the proposed model for 100

epochs, used SGD optimizer with a weight decay of 0.0001 and a Nesterov momentum value of

0.9. Multi-step learning has been employed that initially starts at 0.001 and decreases by half after

every 25 epochs. As per the standard literature convention, 10% data from the predefined training

set has been separated for the model validation purpose.

3.5 Experimental results

In this section, we first perform standard quantitative analysis on three benchmark datasets: UCF-

QNRF [35], ShanghaiTech [127], and AHU-crowd [32]. These benchmarks pose a great collective

challenge for the proposed scheme to prove its effectiveness, as they vary significantly with each

other in terms of average image resolution, average crowd number per image, total images, and

lighting conditions. Next, we discuss the ablation experiments findings and the cross-dataset eval-

uation, followed by the qualitative evaluation. For comparison with other state-of-the-art methods,
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ShanghaiTech UCF-QNRF
Method MAE RMSE MAE RMSE

MCNN [127] 110.2 173.2 277 426
CMTL [94] 101.3 152.4 252 514

Switch-CNN [85] 90.4 135.0 228 445
SaCNN [126] 86.8 139.2 - -
IG-CNN [3] 72.5 118.2 - -
ACSCP [87] 75.7 102.7 - -
CSRNet [54] 68.2 115.0 - -

CL[35] - - 132 191
CFF [91] 65.2 109.4 93.8 146.5

RRSP [103] 63.1 96.2 - -
CAN [59] 62.3 100.0 107 183

L2SM [115] 64.2 98.4 104.7 173.6
BL [65] 62.8 101.8 88.7 154.8

ZoomCount [82] 66.6 94.5 128 201
PRM-based[83] 67.8 86.2 94.5 141.9

v1/v2 (ours) 71.4/70.1 85.7/85.3 103.1/100.6 139.6/136.3
v3/v4 (ours) 69.8/67.9 84.7/81.9 101.7/98.4 137/135.1

v5 (ours) 67.1 81.0 96.9 130.1

Table 3.3: Experiments on ShanghaiTech [127] and UCF-QNRF [35] benchmarks. The proposed
method (v5) outperforms the state-of-the-art methods (including the PRM based approach [83])
for the RMSE metric, while giving comparable results for the MAE metric.

we evaluate all five versions of the proposed method (v1,v2,v3,v4,v5) as discussed in Sec. 3.3.3.

3.5.1 Experiments on UCF-QNRF Dataset

UCF-QNRF [35] is one of the most diverse, realistic, and challenging dataset. It consists of 1,535

free-view images with a predefined train/test division of 1,201/334. It contains images with rel-

atively very small (300 × 377) and very large (6666× 9999) resolutions, with 1,251,642 total

people annotations that show its crowd complexity and diversity. We compare the proposed ap-

proach with the state-of-the-art methods (including the PRM based approach [83]) in Table 3.3.

As shown, the proposed scheme (v5) outperforms the state-of-the-arts under the RMSE evaluation

metric by ∼ 8.3% (from 141.9 to 130.1), amid performing reasonably well for the MAE.
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Method MAE RMSE
Haar Wavelet [71] 409.0 -

DPM [20] 395.4 -
BOW–SVM [18] 218.8 -

Ridge Regression [12] 207.4 -
Hu et al. [32] 137 -
DSRM [120] 81 129

ZoomCount [82] 74.9 111
CC-2P (PRM-based)[83] 66.6 101.9

v1/v2/v3 (ours) 69.8/67.1/65.4 107.8/103.5/100.2
v4/v5 (ours) 63.1/60.2 99.5/91.7

Table 3.4: AHU-Crowd dataset experiments.

3.5.2 Experiments on ShanghiTech Dataset

The ShanghaiTech Part-A benchmark [127] is another diverse and free-view crowd counting bench-

mark. It contains 482 images (predefined train/test division of 300/182) with a total of 241,677

people annotations and average image resolution of 589×868. Based on the quantitative compar-

ison with the state-of-the-art methods (including the PRM based methods [83]) as shown in Table

3.3, the proposed approach (v5) decreases the RMSE error by ∼ 6% (from 86.2 to 81.0). For the

MAE metric, our schemes give reasonable and comparable results. The lowest RMSE value also

demonstrates that our method is less susceptible to huge crowd over- and under-estimation.

3.5.3 Experiments on AHU-Crowd Dataset

The AHU-Crowd [32] dataset contains 107 crowd images with 58 to 2,201 people annotations

per image and 45,807 annotations in total. As per the standard evaluation process, we perform

5-fold cross-validation, and final (MAE, RMSE) results are obtained by computing their average.

Evaluation and comparison results are shown in Table 3.4, where our scheme (v5) outperforms

other state-of-the-arts under both evaluation metrics with significant improvements i.e., the MAE

error decreases by ∼ 9.6% (from 66.6 to 60.2) and the RMSE improves by ∼ 10% (from 101.9 to

91.7).
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RM Modules Quantity Effect
RM Modules per column in Phase-2 and 3 MAE RMSE

1 79.3 111.4
2 (our default) 67.1 81.0

3 75.8 104.7
Input Priors Effect

MAE RMSE
w/o (I2, I3) 77.1 108.8

w/o (I3) 75.9 106.5
w/o (I2) 73.8 101.4

only (I1) with original input size (256×256) 80.1 124.5
with (I1, I2, I3) (our default) 67.1 81.0

Auxiliary Regression Heads Effect
MAE RMSE

w/o RH1 76.2 107.0
w/o RH2 71.7 115.2
w/o RH3 73.9 103.1

w/o (RH1,RH2,RH3) 78.5 120.7
with (RH1,RH2,RH3) (our default) 67.1 81.0

Table 3.5: Three respective ablation studies on the effect of RM modules quantity per column in
Phase-2 and 3, Input priors (I1, I2, I3), and auxiliary crowd regression heads usage on the proposed
network performance. The results demonstrate the fact that the priors and auxiliary heads are of
vital importance, as the MAE and RMSE errors increase without them. These ablation experiments
are done using the ShanghaiTech dataset, and performed on the proposed method version v5, as
being the best of them quantitatively.

3.5.4 Effect of RM Modules Quantity

In this ablation study, we examine the effect of the number of RM modules in the Phase-2 and 3

of the proposed scheme. Instead of using 2 RM modules by default, we evaluate our method (v5)

separately by utilizing only either 1 or 3 RM modules per column in each phase. As shown in

Table 3.5 on the ShanghaiTech [127] dataset, our default choice of 2 RM modules per column in

both phases (Phase-2 and 3) yields the most effective results. Using 1 or 3 RM modules per col-

umn in each phase cause the MAE, RMSE errors increase of (15.4%,27.3%) and (11.5%,22.6%)

respectively. Thus, we have employed 2 RM modules per column in Phase-2 and 3.
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Method MAE RMSE
Cascaded-mtl [94] 308 478
Switch-CNN [85] 301 457

CC-2P (PRM based) [83] 219 305
v1/v2/v3 (ours) 214/217/212 301/303/294

v4/v5 (ours) 206/201 285/278

Table 3.6: Cross-dataset experiments.

3.5.5 Effect of Input Priors (I1, I2, I3)

This section reveals the quantitative importance of the input priors. We remove these input priors

in different experimental settings to analyze their effectiveness. In the first three separate exper-

iments, we only use (I1), (I1, I2) and (I1, I3) input prior(s) respectively. While, in the last setting,

we only deployed the I1 input, but with the original 256× 256 input size without any rescaling.

The consequent ablation results are shown in Table 3.5, from which we can see that removing

these input priors significantly decreases the overall network performance (with minimum MAE,

RMSE errors increase of 9.1%,20.1% respectively). Thus, all three input priors are critical for the

proposed method effectiveness.

3.5.6 Effect of Auxiliary Crowd Regression Heads

In this experiment, we analyze the quantitative effect of employing the auxiliary crowd regres-

sion heads (RH1,RH2,RH3) in the proposed scheme. During this ablation study, we removed

each auxiliary head one by one and evaluate the network (v5) on the ShanghaiTech Part-A [127]

dataset. As shown in Table 3.5, the performance decreases significantly after removing these heads

(RH1,RH2,RH3). For instance, without using the RH1 head, the MAE error increases the most with

a jump of 11.9%. Similarly, the RMSE error is being affected the most by the RH2 head removal

with a 29.7% increase in error.
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GT=597, PRM=431
Ours=595, DME=301

GT=1929, PRM=1395
Ours=1920, DME=623

GT=3653, PRM=2792
Ours=3639, DME=2792

GT=1070, PRM=1011
Ours=1072, DME=722

Figure 3.4: Ground truth (GT) based qualitative comparison.

3.5.7 Cross-Dataset Evaluation

During the cross-dataset experiment, all methods have been trained and tested on the ShanghaiTech

Part-A [127] and the UCF-QNRF [35] datasets respectively. As shown in Table 3.6, the proposed

method demonstrates better generalization capability as compared to the state-of-the-art methods

(including the PRM-based scheme [83]) with MAE, RMSE errors decrease by 8.2% (from 219 to

201) and 8.9% (from 305 to 278) respectively. Similar to the previous experiments, the proposed

approach version (v5) appears to be the most effective cross-dataset validation scheme with the

lowest MAE, RMSE values.
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3.5.8 Qualitative Evaluation

In this section, we demonstrate some qualitative results as shown in Fig. 3.4. We also compare

our scheme with the PRM-based [83] and density-map estimation (DME) [35] based recent state-

of-the-art methods. In comparison, it can be observed that the proposed scheme yields the best

performance of all on these actual test images with hugely varying crowd-density, lighting condi-

tion, and image resolution.

3.6 Conclusion

To address the major crowd count challenges, we proposed a new multi-resolution fusion based

end-to-end crowd counting network for the still images in this work. We also deployed a new and

effective PRM substitute that uses three input priors, and proves to be much more accurate than

the PRM. Both quantitative and qualitative results have revealed that the proposed network outper-

forms the state-of-the-art approaches under the RMSE evaluation metric. Cross-dataset evaluation

also demonstrates better generalization capability of our approach towards new datasets.
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Chapter 4

PRM-based Crowd Counting via the Multi-scale Fusion and

Attention Network (Uni-Modal)

This chapter deals with the second multi-scale and uni-modal crowd estimation network. This work

focuses on improving the recent plug-and-play patch rescaling module (PRM) based approaches

for crowd counting. In order to make full use of the PRM potential and obtain more reliable

and accurate results for challenging images with crowd-variation, large perspective, extreme oc-

clusions, and cluttered background regions, we propose a new PRM based multi-resolution and

multi-task crowd counting network by exploiting the PRM module with more effectiveness and

potency. The proposed model consists of three deep layered branches with each branch generating

feature-maps of different resolutions. These branches perform a feature-level fusion across each

other to build the vital collective knowledge to be used for the final crowd estimate. Additionally,

early-stage feature-maps undergo visual attention to strengthen later-stage channel’s understanding

of the foreground regions. The integration of these deep branches with the PRM module and the

early-attended blocks proves to be more effective than the original PRM based schemes through

extensive numerical and visual evaluations on three benchmark datasets. The proposed approach

yields a significant improvement by a margin of 12.6% in terms of RMSE evaluation criterion. It

also outperforms state-of-the-art methods in cross-dataset evaluations. Most content of this chapter

comes from our paper [84].
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Figure 4.1: The proposed multi-task feature-level fusion based crowd counting network. The
256×256 input patch (IP) passes through the initial deep layers (IDL) to output the initial feature-
maps (IFM) that are fed into the phase-based multi-branch network. Each of the three branches/-
columns maintains its original resolution throughout that branch [99, 105]. The output channels
from the first residual block (RB) of the (Branch-1, Phase-2) are branched-out to make the classi-
fication head (CH). The CH classifies the patch (IP) 4-way according to its crowd-density level.
This labeling process is being used by the PRM module [83] to decide if appropriate rescaling
and generation of new patches are required or not. The resultant patch(es) then passes through the
concatenation module (CMod) to generate the channels (C) that are concatenated back into the net-
work after adjusting the number of channels via the Bottleneck layer (BL). The network branches
also do the feature-level fusion regularly to form the model collective knowledge. After the re-
maining processing, the Phase-3 outputs three later-stage feature-maps (LFM-B1, LFM-B2, LFM-
B3). Each LFM passes through the VACM module along with their respective branch early-stage
feature-maps (EFM-B1, EFM-B2, EFM-B3). The VACM generated final feature-maps (FFMs) are
eventually inserted into the concatenation-based Crowd Regression Head (CRH) to obtain the final
crowd count (CCIP) for the input Patch (IP).
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4.1 Introduction

Recently, Sajid et al. [83] proposed a counting-by-regression based method that uses a lightweight

Patch Rescaling Module (PRM) to rescale the input image or patch accordingly based on its crowd-

density level before the crowd estimation. They also proposed PRM-based schemes, which per-

formed reasonably better as compared to other state-of-the-art methods. Although these schemes

produce state-of-the-art results, they carry the following key shortcomings:

• They maintain a single branch/column architecture with only-one scale focus that limits their

achievable performance and potential effectiveness.

• These models only utilize the PRM based input-level multi-resolution rescaling process,

while lacking the beneficial feature-level multi-resolution process.

In this work, we present a new multi-resolution feature-level fusion based multi-task and

visually-attended crowd counting method that aims to address the major crowd counting chal-

lenges as well as further explores and pushes the boundaries of the PRM module by tackling its

shortcomings as mentioned above. The proposed PRM based scheme, as shown in Fig. 4.1, incor-

porates multiple columns or branches, each with feature-maps of different resolutions. Based on

the high-resolution networks [99, 105], these branches perform the fusion or sharing across each

other on a regular basis to form a collective knowledge that improves the overall network perfor-

mance. We also perform the visual-attention process on the early-stage feature-maps from each

of these branches to boost later-stage channel’s understanding of foreground and background. On

the other hand, the PRM based rescaling of the input image or patch has been used to select the

appropriate input-level scale based on its crowd-density level. The experiments (Sec. 4.5) demon-

strate the proposed PRM utilization to be remarkably more effective as compared to its previous

implementations [83, 82].
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4.2 Our Contributions

The key contributions of this chapter are listed as follows:

• We propose a new multi-resolution and multi-task PRM based visually-attended crowd count-

ing network that effectively addresses major crowd counting challenges, including the issues

of crowd-like background regions and huge crowd-variation.

• We deploy the plug-and-play PRM module so as to further push its boundaries and utilize it

more effectively as compared to its previous deployments.

• We employ the visual attention mechanism in a unique and effective way on early-stage

feature-maps that facilitates the later-stage channels to better understand the foreground re-

gions.

• The proposed scheme outperforms the current-best methods in most cases, including the

original PRM based schemes as demonstrated via both numerical and visual experiments on

three benchmark datasets. The proposed model shows an improvement of up to 12.6% in

terms of RMSE evaluation while performing almost equally best for the MAE evaluation

criterion. During the cross-dataset evaluation, the proposed method outperforms the state-

of-the-art.

4.3 Proposed Approach

This work aims to address the major crowd counting challenges (e.g., huge difference in image and

scale resolution, severe occlusions, far-reaching perspective changes, etc.) as well as to exploit

the PRM module more effectively while mitigating its shortcomings. The proposed multi-task

network, as shown in Fig. 4.1, contains three deep-layered branches with different resolutions

feature-maps (channels). The feature-level fusion [99, 105] occurs in between these branches on
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Layer Output Filters (F)
Initial Deep Layers (IDL)

IP 3×256×256
64×128×128 (3×3) conv, s = 2, p = 1, 64F
64×64×64 (3×3) conv, s = 2, p = 1, 64F

IFM 32×64×64 (1×1) conv, s = 1, p = 0, 32F
Classification Head (CH)

32×64×64
64×32×32 (3×3) conv, s = 2, p = 1, 64F
32×16×16 (3×3) conv, s = 2, p = 1, 32F
32×8×8 (2×2) Global Avg. Pooling, s = 2
1024D FC -

4D FC, Softmax -
Concatenation Module (CMod)

3×256×256
Conv1 64×128×128 (3×3) conv, s = 2, p = 1, 64F
Conv2 32×64×64 (3×3) conv, s = 2, p = 1, 32F

RB 32×64×64 -
Crowd Regression Head (CRH) (Continued from Fig. 3(b))

64×32×32
64×16×16 (3×3) conv, s = 2, p = 1, 64F
64×8×8 (2×2) Avg. Pooling, s = 2
1024D, FC -

1D, FC -

Table 4.1: Configurations of IDL, CH, CMod, and CRH modules. Each conv operation denotes
the Convolution-BN-ReLU sequence [33]. (s: stride, p: padding, FC: Fully Connected)

a regular basis, which helps them to form a collective knowledge about the input image or patch.

As their final output, each of these branches produces early- (EFM) and later-stage (LFM) feature-

maps. The EFMs undergo visual attention process before concatenation with the LFM channels via

the visual attention and concatenation (VACM) module. The visually-attended EFMs enable the

LFMs to clearly distinguish between foreground and background image regions. The concatenated

final feature-maps (FFMs) then pass through the crowd regression head (CRH) to output the final

crowd estimate. The PRM module has been deployed to rescale the input to its appropriate scale.

To start with, we first divide the input image into fixed-size 256× 256 non-overlapping patches.

Following that, we estimate the crowd count for each resultant patch separately using the proposed
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scheme. Finally, the image total people count is equal to the summation of all its patches crowd

estimates.

The input patch (IP) first proceeds through the initial deep layers (IDL), as detailed in Ta-

ble 4.1, to produce the initial feature maps (IFMs). The IDL also reduces the input resolution to

1/4 (from 256× 256 to 64× 64). Next, these feature-maps are routed to Phase-1 of the multi-

branch network. The phase-wise multi-branch network comprises of five key components: Multi-

resolution branches and phases, Multi-resolution fusion, PRM module deployment, VACM mod-

ule, and Crowd Regression Head (CRH). They are detailed as follows.

4.3.1 Multi-resolution Branches and Phases

The network comprises of three phases (Phase-1, 2, and 3). The initially generated feature-maps

(IFMs) or channels pass through the phase-wise organized multi-branch deep layers, starting from

Phase-1. Each phase contains the total number of multi-resolution branches equal to its phase

number. Consequently, Phase-1, 2, and 3 contain one, two, and three deep branches, respec-

tively. Each branch also maintains its channels resolution throughout that branch [99, 105]. These

branches also perform feature-level fusion across each other on a regular basis to form a collective

knowledge-based learning process, as detailed in the next subsection 4.3.2. The channel resolu-

tion and the total number of channels in a specific branch depend on the highest-resolution branch

configuration (Branch-1). The channel resolution decreases by half in each subsequent lower-

resolution branch. However, the total number of channels increases 2× times as we move from

higher to lower-resolution branches. Thus, Branch-1, 2, 3 contain (32×64×64), (64×32×32),

(128×16×16) channels respectively, where it is denoted by (Channels×Width×Height).

Each phase also contains the Residual Blocks (RB). Each RB comprises of four residual units

[26] that are 3-layer based residual modules as shown in Fig. 4.2. Batch Normalization (BN) [36]

and the non-linear ReLU activation [69] follow each convolution operation. The number of such

RB modules remains the same in each branch of a specific phase.

Eventually, the phase-based three-branch structure outputs six separate blocks of feature-maps;
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Figure 4.2: 3-Layered Residual Unit [26] being used in the Residual Block (RB). Each RB is
composed of four such units.

three early- (EFM) and three later-stage (LFM) feature-maps. The phase-3 output blocks from the

respective branch Bx (x=1,2, or 3) serve as the LFM-Bx channels. To obtain the early-stage EFM-

Bx channels, we take the very first channels being produced in that specific branch Bx. These

channels proceed forward for further processing.

4.3.2 Repeating Multi-resolution Fusion

The branches in a phase regularly share their channels across each other via the summation-based

fusion. This sharing process helps in learning and building the collective information and knowl-

edge from all branches that naturally enhances the generalization potential of the proposed network

towards huge crowd-density and scale variation. The higher-branch channels are fused into the

lower-resolution channels using the (3× 3,stride− 2, padding− 1) convolution(s) to down-size

the resolution accordingly [99, 105]. To fuse the Branch-1 channels into the Branch-2, Branch-1

channels are down-sampled by using one such 3×3 convolution operation. Similarly, the Branch-1

fusion into Branch-3 requires this convolution operation twice. To fuse the lower-resolution chan-

nels into the higher-level branch, bilinear upsampling has been applied to lower-resolution features

to up-size them accordingly before the fusion process [99, 105].
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4.3.3 PRM Module Deployment

The purpose of the Patch Rescaling Module (PRM) [83] is to rescale the input patch (IP) based

on its crowd-density level. As defined in [83], we first require the 4-way crowd-density classifi-

cation (No-Crowd (NCP), low-Crowd (LCP), Medium-Crowd (MCP), High-Crowd Patch (HCP))

for input (IP) before using the PRM module. Thus, we branch-out the output channels from the

first RB module of (Branch-1, Phase-2). These channels then proceed through the crowd-density

Classification Head (CH) that performs the required 4-way classification (NCP, LCP, MCP, HCP)

[83]. Depending on the designated class label (ClassIP), the PRM rescales the input patch (IP)

accordingly as given in [83]. Consequently, it generates one or more new 256×256 size patches.

For (ClassIP = NCP,LCP,MCP), the PRM generates (1,1,1) new patches respectively. In case of

(ClassIP = HCP), the PRM divides the input patch (IP) into four new 128× 128 patches, then

upscales each by 2× to output the final 256×256 size patches [83]. The PRM generated patches

then separately go through the concatenation module (CMod) to generate the initial feature-maps.

Eventually, these features go through the concatenation process with the (Branch-1, Phase-2) sec-

ond RB-block output, followed by the Bottleneck layer (BL) to adjust the number of channels

before proceeding further.

The CH configuration is shown in Table 4.1. It utilizes the softmax based 4-way classification

activation with the cross-entropy loss, given as follows:

LossCH =−
4

∑
i=1

yilog(ŷi) (4.1)

where yi denotes the actual class (1 or 0) and ŷi indicates the predicted class label. Similarly, the

concatenation module (CMod) configuration is shown in Table 4.1, where it consists of several

deep layers to eventually yield the final (32× 64× 64) channels to be used next for the concate-

nation. It is also worth mentioning that the input patch (IP), classified as the NCP label during

the test time, will be automatically discarded without any further processing. This is very effective

especially in the case of discarding cluttered background regions in the images (e.g. tree leaves)
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Figure 4.3: Visual Attention and Concatenation module (VACM). The early-stage Feature-Maps
(EFM-Bx) from the Branch Bx (=1,2, or 3) get visual attention and output the segmentation map
(SM) that undergoes an element-wise multiplication with the original EFM-Bx channels to gen-
erate the visually-attended feature-maps (VAFM). These VAFM maps concatenate with the later-
stage feature-maps (LFM-Bx) of the same branch before passing through the channel-adjusting
deep layer to output the final feature-maps (FFM-Bx) for the specific branch Bx.

that look very similar to the dense-crowd region.

4.3.4 Visual Attention and Concatenation Module (VACM)

The purpose of the VACM module is to visually attend the EFM feature-maps and share them

with the LFM channels for better foreground vs background understanding. The VACM mod-

ule visually attends the early-stage feature-maps (EFM-B1, EFM-B2, EFM-B3) and concatenates

them separately with their respective branch later-stage channels (LFM-B1, LFM-B2, LFM-B3).

The resultant final feature-maps (FFM-B1, FFM-B2, FFM-B3) then proceed through the crowd

regression head (CRH) for the final crowd estimate. As shown in Fig. 4.3, the input EFM-Bx

block passes through three deep convolution layers to produce the attention-based segmentation

map (SM ∈ [0,1]W×H). The SM undergoes element-wise multiplication with the original EFM-Bx

block to produce visually attended feature-maps (VAFM). These VAFMs are then concatenated

with the input LFM-Bx block and channel adjusted to output final feature-maps (FFM-Bx) for the

branch Bx.

This early-attention mechanism helps in strengthening the early-stage feature-maps of each
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Figure 4.4: Concatenation-based Crowd Regression Head (CRH) concatenates the lower-level
branches with the highest-level (Branch-1), followed by several deep layers to form the regres-
sion head.

branch towards better understanding and distinguishing the spatial foreground in comparison to the

background. More importantly, this information becomes an integral part of the later-stage chan-

nels collective knowledge by concatenation-based sharing with them. Consequently, later-stage

channels use this information to boost areas of interest and neglect background pixels. The SM

weights are trained using the cross-entropy error (LossSM) between the SM and the ground-truth

map. To compute the ground-truth map, we use each person’s localization information already

available in the benchmark datasets. This attention process significantly improves the network

performance as shown in the ablation study in Sec. 4.5.4.

4.3.5 Crowd Regression Head (CRH)

The VACM module outputs three separate sets of final feature-maps (FFB-B1, FFB-B2, FFB-B3),

each for the respective branch. These channels are then routed to the Crowd Regression Head

(CRH). The CRH concatenates the FFB-B2 and FFB-B3 outputs with the FFB-B1 output channels

using the bilinear upsampling (BU) as shown in Fig. 4.4. Following that, it passes through various

deep convolution and Fully Connected (FC) layers and eventually through the final 1-dimensional

single neuron (1D, FC) to regress the final crowd count (CCIP) for the input patch (IP) as shown

in Table 4.1. When class label ClassIP = HCP, then the crowd count for the input patch (IP) is the

sum of all four PRM generated and rescaled (256×256 size) patches, given as follows:
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CCIP =
4

∑
i=1

ccp(i), (i f ClassIP = HCP) (4.2)

where ccp(i) with (i = 1,2,3 and 4) denotes the four rescaled patches created by the PRM for the

input patch (IP) being classified with the HCP label. The regressor utilizes Mean Square Error

(MSE) as its training loss function, defined as follows:

LossRegressor =
1
T

T

∑
s=1

(F(xs,Θ)− ys)
2 (4.3)

where T represents the total training samples per batch, ys indicates the actual crowd number for

the input patch xs, and F(.) represents the mapping or transformation function with the learnable

weights parameters Θ that learns to regress the crowd number for the input patch. Finally, the total

network loss (Losstotal) is the sum of 4-way classification, segmentation map (SM), and the crowd

regression losses:

Losstotal = LossRegressor + LossCH + LossSM (4.4)

4.4 Evaluation and Training Details

We utilize the commonly used crowd counting metrics for numerical evaluation: Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE), as defined below:

MAE =
1

T I

T I

∑
h=1

|CCh − ˆCCh| (4.5)

RMSE =

√√√√ 1
T I

T I

∑
h=1

(CCh − ˆCCh)2 (4.6)
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where T I indicates the total number of test images, and CCh and ˆCCh denote the true and the

predicted crowd counts respectively for the test image h.

Network Training Details. To train the network, we randomly take out 75,000 patches of

128× 128, 256× 256, and 512× 512 sizes from the predefined training images. The resultant

patches with mixed crowd numbers are resized to 256× 256 size as per required. We double the

training patches number by performing the horizontal-flip based data augmentation on each patch.

The proposed network has been trained for 120 epochs with a batch size of 16. Stochastic gradient

descent (SGD) has been used as the optimizer with a weight decay of 0.0001 and the Nesterov

Momentum equal to 0.9. We also employed the multi-step learning rate (α) that starts with the

value of 0.001 and decreases to 1/2 after every 30 epochs. Also, 10% training data has been

separated for the network validation purpose during the model training.

4.5 Experiments

This section presents both numerical and visual results based on different experiments conducted

on three extensively used crowd counting benchmarks: UCF-QNRF [35], ShanghaiTech [127],

and the AHU-Crowd [32] dataset. These datasets are totally different from each other as they vary

remarkably in terms of image resolution, average people count per image, maximum/minimum

people per image, background regions, total images, and different lighting conditions. First, we

compare our scheme numerically with the state-of-the-art models on these benchmarks. Next, we

discuss the ablation experiments and the cross-dataset evaluation. Finally, visual analysis has been

presented to discuss qualitative performance.

4.5.1 UCF-QNRF Dataset Numerical Evaluation

The UCF-QNRF [35] dataset contains a total of 1,535 images with a pre-established training/test-

ing division of 1201/334 respectively. The images contain a wide range of crowd-density and vary

greatly in image resolution and background setting. The total people annotations in the dataset
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ShanghaiTech UCF-QNRF
Method MAE RMSE MAE RMSE

MCNN [127] 110.2 173.2 277 426
CMTL [94] 101.3 152.4 252 514

Switch-CNN [85] 90.4 135.0 228 445
SaCNN [126] 86.8 139.2 - -
IG-CNN [3] 72.5 118.2 - -
ACSCP [87] 75.7 102.7 - -
CSRNet [54] 68.2 115.0 - -

CL[35] - - 132 191
CFF [91] 65.2 109.4 93.8 146.5

RRSP [103] 63.1 96.2 - -
CAN [59] 62.3 100.0 107 183

L2SM [115] 64.2 98.4 104.7 173.6
BL [65] 62.8 101.8 88.7 154.8

RRP [13] 63.2 105.7 93 156
HA-CCN [95] 62.9 94.9 118.1 180.4
ADSCNet [6] 55.4 97.7 71.3 132.5
RPNet [119] 61.2 96.9 - -

ZoomCount [82] 66.6 94.5 128 201
PRM-based[83] 67.8 86.2 94.5 141.9

Ours 56.1 79.8 71.3 120.7

Table 4.2: Numerical experiments on the UCF-QNRF [35] and the ShanghaiTech [127] bench-
marks. Our proposed scheme outperforms the state-of-the-art models (including the original PRM-
based) under the RMSE standard criterion, while indicating closer or equal to the best results for
the MAE evaluation metric.

equal to 1,251,642, while the images resolution varies between (300× 377) and (6666× 9999).

We compare the proposed approach with the state-of-the-art models as reported in Table 4.2. The

evaluation demonstrates that our model performs the best in comparison to the state-of-the-art for

the RMSE evaluation criterion with 8.9% performance boost (from 132.5 to 120.7) amid perform-

ing equally best for the MAE metric. It may also be noted that the proposed model performs better

for both metrics as compared to the original PRM based scheme (CC-2P) [83].
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Method MAE RMSE
Haar Wavelet [71] 409.0 -

DPM [20] 395.4 -
BOW–SVM [18] 218.8 -

Ridge Regression [12] 207.4 -
Hu et al. [32] 137 -
DSRM [120] 81 129

ZoomCount [82] 74.9 111
CC-2P (PRM-based)[83] 66.6 101.9

Ours 57.5 89.0

Table 4.3: AHU-Crowd [32] benchmark dataset based experiments indicate that the proposed
scheme appears to be the best for both the evaluation metrics in contrast to the state-of-the-arts
including the original PRM-based model.

4.5.2 ShanghaiTech Dataset Numerical Evaluation

The ShanghaiTech [127] dataset, comprises of a total 482 images with diverse crowd range, images

resolution, and varying lighting conditions. These images are already divided into 300 training and

182 testing images. The average image resolution in the benchmark is 589× 868 with a total of

241,677 human annotations in total. We analyze the proposed scheme on this benchmark and also

compare it with the state-of-the-art (including the original PRM-based [83]) models. The results,

as shown in Table 4.2, from which we can see that our model yields the best results for RMSE

criterion with an improvement of 7.4% (from 86.2 to 79.8), and also performs reasonably well in

terms of the MAE evaluation metric.

4.5.3 Numerical Experiments on AHU-Crowd Dataset

AHU-Crowd dataset [32] poses a great challenge with totally different statistics as compared to the

ShanghaiTech and the UCF-QNRF datasets. It only contains 107 images with 58 to 2,201 ground-

truth people count per image. The dataset also contains a total of 45,807 people annotations. Based

on the standard literature practice, we carried out the 5-fold cross-validation for the (MAE, RMSE)

based numerical evaluation. In each fold, 96 images were selected for training, and the remaining

11 images for the testing purpose. We report the numerical evaluation and comparison results
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Total Branches Choice
Total Branches MAE RMSE

1 91.6 131.4
2 73.6 109.7

3 (our default choice) 56.1 79.8
4 69.6 97.5

Residual Units (RUs) per RB Block Quantity Effect
RU units per RB block MAE RMSE

2 77.9 101.1
3 71.5 98.3

4 (our default choice) 56.1 79.8
5 71.7 97.2
6 73.6 102.8

2-Layered vs 3-Layered Residual Unit Choice
MAE RMSE

2-Layered 70.6 96.9
3-Layered (our default choice) 56.1 79.8

Branching-out Positioning in the Network
From MAE RMSE

RB (of Phase1) 71.0 97.9
1st RB (of Branch-1, Phase2) 56.1 79.8
2nd RB (of Branch-1, Phase2) 69.1 94.8
1st RB (of Branch-1, Phase3) 70.9 96.1

Visual Attention (VACM) Effect
MAE RMSE

w/o VACM 63.9 82.4
w VACM (our default choice) 56.1 79.8

Table 4.4: Five different sets of ablation experiments validate our selection of the few vital hyper-
parameters for the proposed network.
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Figure 4.5: Four-branch based version of the proposed network for the branch quantity ablation
study. In this setting, a new branch (Branch-4) has been added into the proposed (three-branch)
model that naturally results in a new phase (Phase-4) as well. Also, one additional EFM (EFM-
B4) block emerges from Branch-4 that passes through VACM along with its respective LFM block
(LFM-B4). The outputs from Phase-4 now serve as the LFM feature-maps for the remaining crowd
estimation process.

in Table 4.3. These findings indicate that the proposed method outperforms other state-of-the-art

methods (including the original PRM based scheme) with significant improvement of 13.7% (from

66.6 to 57.5), 12.6% (from 101.9 to 89.0) for the MAE and RMSE metrics respectively.

4.5.4 Ablation Experiments Study

In this section, we present five ablation studies on the ShanghaiTech dataset [127] to investigate

the effect of different components of the proposed scheme.

Effect of the total number of Columns/Branches. First ablation study discusses the conse-

quences related to the quantity of multi-resolution branches (or columns) being used in the pro-

posed network. We explore this critical hyper-parameter by experimenting separately with differ-
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ent quantities of such branches. The study results are shown in Table 4.4. Using only one branch

(Branch−1) produces the worst results, since it only contains a single column and thus lacks any

fusion or information-sharing. Two-Branch (Branch−1,Branch−2) network does not contain the

Branch−3 column, but performs better than one-branch based model. The proposed network, with

three multi-resolution branches, gives the best performance in comparison to the above configura-

tions as well as the model with four multi-resolution branches as indicated in the same table. Due

to this ablation study outcome, the proposed model has been designed with three multi-resolution

branches. In the four-branch network experiment, we deployed an additional branch (Branch−4)

with 2× down-scaled resolution (8× 8) and double the channels (256) than the Branch− 3 as

shown in Fig. 4.5. The four-branch based model naturally contains an additional phase (Phase4)

to cover the fusion process for Branch− 4 with other branches. Naturally, it also contains one

more early-stage block (EFM-B4) emerging from Branch-4. The EFM-B4 is routed to the VACM

module along with its respective later-stage block (LFM-B4). Additionally, the Phase4 outputs

now serve as the LFM blocks.

Effect of the number of residual units in RB blocks. Here, we investigate the effect of using four

3-layered residual units (RU) per RB block as compared to deploying other potential quantities

(2,3,5, or 6 RU units per RB block). As shown in the ablation experiments results in Table 4.4, 4

RU units per RB block yield the best results with the lowest MAE and RMSE errors. Thus, it acts

as our default and preferred choice in the proposed network.

Effect of using 3-layered vs 2-layered residual unit. We have two major choices for the Residual

Unit: 2-layered or 3-layered deep residual unit as given in [26]. Results for both choices are shown

in Table 4.4. It is evident that the 3-layered RU performs much better than the 2-layered residual

unit.

Effect of branching-out location in the network. As shown in the proposed network in Fig.

4.1, we branch-out the output features of the first RB block in the (Branch-1, Phase-2) to feed

into the classification head. Here, we investigate the effect of the location of this branching-out by

re-positioning it to other Branch-1 RB blocks output. As shown in Table 4.4, our default choice
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Method MAE RMSE
Switch-CNN [85] 301 457
Cascaded-mtl [94] 308 478

CC-2P (PRM based) [83] 219 305
Ours 197 271

Table 4.5: Based on the comparison with the state-of-the-art methods during the cross-dataset
evaluation, our approach outperforms them under both evaluation criteria.

of branching-out from 1st RB of (Branch-1, Phase-2) gives the lowest MAE and RMSE error.

Additionally, in each ablation experiment setting, the concatenation back into the network happens

with the RB block of the Branch-1 that is next and subsequent to the RB block responsible for the

branching-out.

VACM Module Effect. Visual attention on the early-stage channels helps in enriching the later-

stage feature-maps. Consequently, the VACM module should improve the overall network perfor-

mance. As shown in Table 4.4, the visual attention process boosts the network effectiveness by

(12.2%,3.2%) in terms of (MAE,RMSE) respectively.

4.5.5 Cross-Dataset Evaluation

To further assess the proposed model, we conducted the cross-dataset evaluation. ShanghaiTech

[127] benchmark has been used for all models training, while the testing has been conducted using

the UCF-QNRF dataset. Table 4.5 reports the proposed approach cross-dataset performance and

also compares it to other state-of-the-art schemes. It is clear from the results that the proposed

model outperforms other methods including the original PRM-based scheme. These findings also

indicate the better generalization potential of our scheme towards unseen images with different

dynamics and crowd diversity.
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GT=1443, PRM=1131
Ours=1427, DME=388

GT=1103, PRM=908
Ours=1089, DME=842

GT=556, PRM=478
Ours=555, DME=236

GT=3653, PRM=2992
Ours=3609, DME=1692

GT=2472, PRM=2017
Ours=2488, DME=1370

GT=207, PRM=130
Ours=204, DME=109

Figure 4.6: Visual evaluation.
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4.5.6 Visual Analysis

In this section, we show a few visual results. Six original test images are shown in Fig. 4.6,

where we analyze our scheme against the state-of-the-art PRM [83] and the density-map estimation

(DME) [35] based methods. These images contain hugely varying crowd-density and scale with

fluctuating lighting conditions and background. As shown in Fig. 4.6, the proposed scheme yields

the best results that are closer to the ground-truth in comparison to the two competing models.

4.6 Conclusion

We have proposed a new multi-resolution fusion and multi-task based crowd counting network with

visual attention in this chapter by further exploring and more effectively utilizing the PRM mod-

ule. The proposed method relies on the PRM module and builds the collective knowledge using

the feature-level fusion across the multi-resolution branches as well as visually attending the early-

stage channels to boost the foreground vs background understanding of later-stage channels. This

integration technique outperforms the state-of-the-art (including the original PRM based) methods

as demonstrated through extensive standard numerical and visual experiments and comparisons.

The proposed scheme also demonstrates better generalization ability during the cross-dataset eval-

uations.
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Chapter 5

Audio-Visual Transformer Based Crowd Counting

(Multi-Modal)

This chapter deals with the multi-modal crowd counting network that combines audio and image

inputs for effective people count. Most content of this chapter comes from our paper [79]. The

most recent study [31] tries to exploit auditory information to aid the visual models, however, the

performance is limited due to the lack of an effective approach for feature extraction and integra-

tion. This work proposes a new audio-visual multi-task network to address the critical challenges

in crowd counting by effectively utilizing both visual and audio inputs for better modalities asso-

ciation and productive feature extraction. The proposed network introduces the notion of auxiliary

and explicit image patch-importance ranking (PIR) and patch-wise crowd estimate (PCE) informa-

tion to produce a third (run-time) modality. These modalities (audio, visual, run-time) undergo a

transformer-inspired cross-modality co-attention mechanism to finally output the crowd estimate.

To acquire rich visual features, we propose a multi-branch structure with transformer-style fusion

in-between. Extensive experimental evaluations show that the proposed scheme outperforms the

state-of-the-art networks under all evaluation settings with up to 33.8% improvement. We also

analyze and compare the vision-only variant of our network and empirically demonstrate its supe-

riority over previous approaches.

5.1 Introduction

Crowd estimation requires one to count the total people in the given image. It finds many ap-

plications in real-world scenarios, e.g., better management of crowd gatherings, safety and secu-
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Input Image Ground-truth density-map

Visual-only [31] Audio-Visual [31] Audio-Visual (Ours)

Figure 5.1: For the low-quality input image with severe conditions such as noise, low-illumination,
or low-resolution, the proposed audio-visual model yields the best and more fine-grained people
estimate (PE) as evaluated using the ground-truth density-map and people count (PC).

rity, and circumventing any undesirable incident. Many deep learning-based image-only schemes

[81, 85, 83, 35, 83, 40, 127, 60] have been proposed to date, ranging from single and multi-branch

networks [127, 81, 83], multi-regressors [85] based to trellis networks [40]. Although they show

reasonable performance in regular images, they fail to generalize well in many practical scenar-

ios such as low illumination and lighting conditions, noise, severe occlusion, and low-resolution

images, where visual information is scarce. Consequently, they give huge crowd under-estimation

as shown in Fig. 5.1. Lack of visual clues may also invoke highly sensitized behavior in these

models towards different image regions, resulting in large over-estimation. Moreover, in the case

of regular images, sub-optimal capabilities of these state-of-the-arts implicate that there is a lot of

room for further improvement.

One compelling way to address these challenges is to investigate the effect of utilizing more

than one modality (e.g., image and audio). Recently, Hu et al. [31] introduced a novel audio-visual

crowd counting task and proposed an estimation model that jointly learns both visual and audio

features and fuses them together. The results demonstrate that combining the related audio modal-
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ity with the visual input significantly improves the crowd estimate in such conditions. However,

it only accounts for the parametric influence of audio features on the visual ones without making

full use of the audio-visual information, thus, under- or over-estimating the crowd as shown in Fig.

5.1.

On the other hand, the learning and fusion of visual and audio modalities have been applied

with reasonable success to other computer vision problems, e.g. classification tasks [112, 9, 30,

45], event localization [57, 116], and speech recognition [123, 25, 68, 96]. However, these schemes

are generally not suitable for the crowd estimation task because of very few pixels per person, and

thus require a specifically tailored method to obtain pixel-perfect results. Moreover, these schemes

(including [31]) mostly focus on improving the intra- or inter-modality fusion process, and often

ignore the significant visual feature extraction part by normally using the conventional VGG [93]

or ResNet-based [26] standard structures for that.

To address these major challenges and issues, we propose a new transformer-based [101] audio-

visual multi-task crowd counting network as shown in Fig. 5.2. It consists of an Audio-Visual

Transformer (AVT) that generates two auxiliary network outputs, image patch-importance ranking

(PIR) and patch-wise crowd estimate (PCE), as part of the inter-modality fusion process. This

explicit PIR and PCE information also helps AVT module in generating a third run-time audio-

visual attended modality that consequently helps in constructive association and transformer-style

co-attention of audio-visual features. Furthermore, no extra ground-truth annotation process is re-

quired to embed the PIR and PCE into the proposed network. Second, instead of deploying the

conventional and standard structure for visual feature extraction, we use the multi-scale branches

that also undergo the unique transformer-inspired inter-scale fusion process to yield rich and pro-

ductive visual representations. Extensive experiments show that the proposed model outperforms

the state-of-the-art methods in all settings with up to 33.8% improvement, especially in challenging

situations such as shown in Fig. 5.1.
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Figure 5.2: The proposed audio-visual crowd counting network. The extracted audio-visual fea-
tures (V,A) go through the AV T module to obtain two auxiliary network outputs (PIR,PCE) and
third (run-time) modality (AVAT T D). The AVAT T D undergoes the cross-modality co-attention fusion
with V and A via the CCM module, followed by getting the final crowd density-map (DM).
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5.2 Our Contributions

The key contributions of this work are listed as follows:

• We propose a novel audio-visual multi-task crowd counting network for effective estimation

in both regular and severe conditions. To the best of our knowledge, this is the first attempt

to use the transformer-style mechanism for this task.

• We introduce the notion of auxiliary PIR and PCE information, and empirically shown that

it is beneficial for better modalities association and extracting rich visual features without

requiring any extra ground-truth annotation process.

• We also design an image-only variant of our model. Extensive experimental evaluations on

benchmark datasets indicate that the proposed networks significantly outperform the state-

of-the-art.

5.3 Proposed Approach

The proposed multi-task model, as shown in Fig. 5.2, exploits both input image and audio modal-

ities for effective crowd estimation. First, we separately extract rich features for both modalities,

then pass them through the Audio-Visual Transformer (AVT) to generate two auxiliary network

outputs: Patch-Importance Ranking (PIR) and Patch-wise Crowd Estimate (PCE). The explicit

PIR and PCE vectors play a crucial role in improving the final crowd estimate, and also help the

AVT in generating the audio-visually attended channels. These attended channels then undergo

the cross-modality co-attention process along with the original audio-visual features (V,A) via the

CCM module. Finally, the CCM output goes through the reshaping and up-sampling steps to give

the crowd-density map, where we sum-up all its pixel values to yield the final crowd count. The

network components are detailed below.
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Figure 5.3: The framework of Visual Feature Extraction (VFE) block.

5.3.1 Audio Feature Extraction (AFE)

To extract the audio features embedding, we deploy the ResNet-like CNN structure [29] (pre-

trained on the AudioSet dataset [48]) and apply it on the conventionally computed [31] Log Mel-

Spectogram (LMS) representation of the raw one-second duration input audio signal. For the given

Audio LMS (ALMS ∈ R64∗96), audio CNN (AFE) yields the vector output as follows:

A = AFE(ALMS) (5.1)

where A ∈ RZ∗1 represents the extracted audio embedding.

5.3.2 Visual Feature Extraction (VFE)

The VFE component, as shown in Fig. 5.3, comprises of three multi-scale branches (MSB) with

repeated inter-branch fusion. The input image (I ∈R3∗W∗H) passes through two initial (3×3) con-

volutional layers to obtain the down-scaled channels (X ∈ R32∗W
4 ∗H

4 ). These features then proceed

through the multi-scale branches (S1,S2,S3) that are composed of several residual structures (RS).

The RS block contains four residual units, where each unit is composed of a three-layer based

ResNet building block [26]. Similar to the high-resolution networks [99, 105], each branch retains
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its channel quantity and resolution throughout that branch. Channel quantity doubles each time as

we move from S1 to S3, while the resolution decreases by half. The MSB module outputs three

separate sets of channels (CS1 ∈ R32∗W
4 ∗H

4 ,CS2 ∈ R64∗W
8 ∗H

8 ,CS3 ∈ R128∗W
16∗

H
16 ).

5.3.2.1 Inter-Branch Fusion

The purpose of inter-branch fusion is to develop coordinated knowledge in-between the multi-

scale branches. We denote this process as {S} → T , indicating the fusion from one or two source

branches (S) channels into the target branch (T ) features. We deploy the transformer-inspired

attention mechanism to achieve such fusion. All cases are detailed below as well as illustrated

in Fig. 5.4. It is worth mentioning that later stage three-branch fusions also integrate the audio

embedding (A) during the fusion process, which empirically proves beneficial and also unique

multi-modal strategy to the proposed method. The fusion process significantly helps the VFE in

preparing constructive and co-attended visual features (V ) for the next steps.

S1→ S2 only (and vice versa). In this step, we first down-sample the source branch channels

(CS1) via 3×3 convolution to match the resolution and quantity of the S2 channels. The resultant

channels (C′
S1) are converted into attention-weights (AW), which separately undergo the attention

mechanism with the respective target branch channels (CS2) to give visually-attended features (C′
S2)

as shown in Fig. 5.4. Mathematically, it is defined as:

C′
S2 = AW ∗CS2 = so f tmax(C′

S1 ∗C
′T
S1)∗CS2 (5.2)

where ∗ and T denote matrix multiplication (MatMul) and transpose respectively. In case of (S2→

S1 only) fusion, the approach remains same except that the lower-branch channels (CS2) are bi-

linearly up-sampled to match CS1 features dimensions before fusing together as shown in Fig. 5.4.

{S1, S2}→ S3 Fusion case. Both higher-branch source channels (CS1,CS2) get down-scaled to

match the lowest-branch channels (CS3) dimensions. The generated channels (C′
S1,C′

S2) are added

element-wise to produce features CS12. After the linear-layer operation on the audio embedding

row-vector (AT ), it separately performs element-wise addition with each row of CS12. The resultant
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Figure 5.4: Illustration of different transformer-inspired inter-branch fusion cases. (S1 → S2 only
(top-left), S2 → S1 only (top-right), {S1, S2} → S3 (middle), {S1, S3}, → S2 (bottom))
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C′
S12 is being used next to obtain the attention weights (AW). The AW finally gets applied on the

target branch channels (CS3) to produce the audio-visual attended channels (C′
S3) as shown in Fig.

5.4. It is defined as:

C′
S3 = AW ∗CS3 = so f tmax(C′

S12 ∗C′T
S12)∗CS3 (5.3)

where C′
S12 = CS12 ⊕ Linear(AT ). Similarly, the ({S2, S3}→ S1) case takes the same direction

as stated above except that now the source channels (CS2,CS3) first get up-scaled to match the

dimensions of the target channels (CS1).

{S1, S3}→ S2 fusion case. The first (CS1) and third (CS3) branch channels are down- and up-

sampled respectively by 2× to match the S2 dimensions, followed by their element-wise summa-

tion to generate CS13. We apply the linear-layer on the audio embedding (AT ), which is separately

added to each row of CS13 via element-wise summation. The produced channels (C′
13) are used to

obtain the attention-weights (AW) that get applied on target channels (CS2) to yield audio-visual

attended features (C′
S2) as shown in Fig. 5.4. We can define it as:

C′
S2 = AW ∗CS2 = so f tmax(C′

S13 ∗C′T
S13)∗CS2 (5.4)

where C′
S13 =CS13 ⊕Linear(AT ).

5.3.2.2 Visual Features Generation

The MSB higher-scales outputs (CS1,CS2) are merged together with the lowest-branch output chan-

nels (CS3) through (3 × 3) convolution after down-scaling higher features via required average

pooling (AP). The generated channels (∈R256∗W
32∗

H
32 ) employ several convolution layers defined as

follows: {Conv2d(256,144,3,(1,1),1)-BN-ReLU, Conv2d (144,144,3,(4,1),1)-BN-ReLU}. Where

Conv2d (I,O,F,P,S) indicates I: input channels, O: output channels, F: F×F filter, P: padding in

(H,W), S: stride, and BN and ReLU denote Batch-Normalization [36] and ReLU [69] activation

function. The resultant channels (∈ RZ∗ W
128∗

H
72 ) are reshaped to give the VFE module output as
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follows:

V =V FE(X), (5.5)

where V ∈ RP∗Z , and P (= W
128 ∗

H
72) represents the total patches/regions in the input image. Intu-

itively, the V matrix can be perceived as containing the Z-dimensional embedding for each image-

patch, with P total patches.

5.3.3 Audio-Visual Transformer (AVT)

The purpose of the AVT module is twofold: 1) Calculate and output auxiliary Patch-Importance

Ranking (PIR) and Patch-wise Crowd Estimate (PCE) Information, 2) Combine this information

to generate third run-time modality to be used by the subsequent Co-attention (CCM) module. The

AVT process, as shown in Fig. 5.5(a), contains two separate streams to compute PIR and PCE. The

AVT calculations are primarily inspired by the transformer-style dot-product attention amid using

both visual (V ) and audio (A) features. The PIR computation is defined as:

PIR = so f tmax(PIRPRE) (5.6)

where PIRPRE = Linear(V ∗A) and PIR ∈ RP∗1. Intuitively, the PIR probability vector ith value

gives the percentage of total image people contained in the ith image-patch. To set the ground-truth

PIR vector jth value (PIRGT ( j)) for training, we use following formula:

PIRGT ( j) =
CCGT ( j)

CCGT (image)
(5.7)

where CCGT ( j) and CCGT (image) denote the actual crowd-count in the jth patch and whole input

image respectively. The KL-Divergence based loss function has been used to measure similarity

between the PIR probability vector and the ground-truth probability distribution (PIRGT ):
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(a) Audio-Visual Transformer (AVT) Unit.

(b) Cross-modality Co-attention Module (CCM).

Figure 5.5: Illustration of PIR, PCE, AVAT T D, and DM computations.
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LossPIR =
1√
P

P

∑
i=1

PIRGT (i) log(
PIRGT (i)

PIR(i)
) (5.8)

where 1√
P

acts as a scaling factor. Similarly, the PCE vector is computed as:

PCE = LinearRow−wise((V +A)∗V T ) (5.9)

where LinearRow−wise indicates the row-wise linear-layer operation on the (P×P) matrix to obtain

(PCE ∈RP∗1) as shown in Fig. 5.5(a). Intuitively, the ith value in the PCE vector gives the network

estimate for the ith image patch. The ground-truth PCE vector computation strategy is the same as

for PIR. The squared-normalized-difference loss function has been deployed for the PCE output,

given as follows:

LossPCE =
P

∑
i=1

(
PCEGT (i)−PCE(i)

∑
P
j=1 PCEGT ( j)

)2 (5.10)

where PCEGT indicates the ground-truth PCE vector and ∑
P
j=1 PCEGT ( j) denotes whole image

actual people-count. The PIR and PCE information looks the same, but they invoke different yet

relevant and effective behavior in the network because of different operational inputs being used

for their calculation. In addition, the nature of both outputs differs as the PIR is probability-

based, while the PCE directly regresses the crowd-count patch-wise. Next, the PIRPRE and PCE

pass through the linear-layer and softmax to produce the attention-weights (AWAV T ). The AWAV T

is then applied on the original visual features (V ) to give the PIR-PCE attended AVT output

(AVAT T D ∈ RP∗Z), which acts as the third modality to be used in the next steps. This unique

AVT strategy helps the network in focusing more on image regions with higher crowd-number and

ignore the background patches. More importantly, the auxiliary mid-network PIR-PCE outputs

aid both earlier and later-stage layers learning during the training process, and thus, resulting in

significant improvement as demonstrated in experiments Sec. 5.5.
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5.3.4 Cross-Modality Co-attention Module (CCM)

The co-attention module exploits the visual features (V ) to perform the image-level crowd-estimation

by jointly considering the audio features (A) and PIR-PCE attended channels (AVAT T D). The

transformer-inspired attention process is shown in Fig. 5.5(b) and defined as:

DMPRE = so f tmax(AVAT T D ∗AEXT D)∗V (5.11)

where DMPRE ∈ RP∗Z , and AEXT D is the (Z ×P) matrix containing P times repeated vector A.

5.3.5 Final Crowd Estimate (CEFINAL)

The DMPRE gets re-shaped and up-sampled 8× to output the final crowd Density-Map (DM ∈

RW∗H) as shown in Fig. 5.5(b). We sum all DM pixel-values to obtain the final crowd estimate

(CEFINAL) for the input image-audio. We deploy L2-norm as the DM loss-function, given as:

LossDM =
W

∑
m=1

H

∑
n=1

(DMmn −DM′
mn)

2 (5.12)

where DM ∈RW∗H , DM′ ∈RW∗H indicate estimated and ground-truth density-maps, respectively.

The network total multi-task loss (LossTOTAL) will be as follows:

LossTOTAL = LossPIR +LossPCE +LossDM (5.13)

Unlike other existing audio-visual mechanisms [31], our scheme employs both global and local

learning (inter-pixel and inter-patch) in an explicit manner with the joint consideration of audio fea-

tures, which empirically improves network performance significantly. It also helps in suppressing

background regions at pixel, patch, and image-level.
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5.4 Evaluation and Training Details

The only available audio-visual crowd counting dataset to-date (DISCO) [31] contains images

with the same 1920 × 1080 resolution. As per convention, we resize them to 1024 × 576 for

better resources usage. Consequently, (CS1,CS2,CS3) channels have (32×256×144), (64×128×

72), (128× 64× 36) dimensions respectively. Therefore, we have 64 image patches in total (i.e.

P = W
128 ∗

H
72 = 8 ∗ 8 = 64), and the value of Z is set to 144. In case of low-resolution setting

experiments, we have 128× 72 size input images as per the norm. During this setting, we train

without any down-sampling in the initial convolution layers, giving dimensions of (CS1,CS2,CS3)

as (32×128×72), (64×64×36), (128×32×18) respectively and P = W
32 ∗

H
18 = 4∗4 = 16.

To generate the ground-truth density map, we apply the 15×15 Gaussian kernel (G∼N (0, 4.0) )

on binary annotations, where the ground-truth annotations are available in terms of people head

center location in the image. We employ Adam optimizer [47] and the learning rate with an initial

value of 1e−5 that decays by 0.99 every epoch with total 500 epochs. The training batch size is

set to 4 and model evaluation takes place after every epoch. To mitigate over-fitting, linear-layers

are followed by the dropout layer with the drop-probability of 0.3, and weight-decay (λ = 1e−4)

has been used.

Evaluation Details. We evaluate and compare our method with the state-of-the-art using standard

evaluation metrics: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), defined

as follows:

MAE =
1
N

N

∑
n=1

|En −Cn|, RMSE =

√
1
N

N

∑
n=1

(En −Cn)2 (5.14)

where Cn and En indicate the ground-truth and estimated crowd for the test audio-image input n

respectively, and N denotes the total test audio-image samples in the dataset.

5.5 Experiments

We first discuss the numerical evaluation on the audio-visual and vision-only benchmark datasets,

followed by the ablation study and visual analysis.
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Method
Regular

Low Res. Gaussian Noise Low Illum. & Gaussian
Avg. Score

128×72 σ = 25/255 σ = 50/255 R=0.2,B=25 R=0.2,B=50
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCN [127] 53.4 84.1 60.1 89.3 53.4 84.0 53.9 84.0 70.7 96.11 70.5 96.1 60.3 88.9
CAN [59] 15.4 28.9 22.1 39.6 13.3 27.2 14.2 28.0 26.0 49.1 33.1 58.2 20.7 38.5
CSR [54] 13.8 28.7 17.1 30.6 13.7 28.0 14.5 29.1 35.7 62.76 45.8 75.4 23.5 42.4

ACSR [31] 14.2 28.0 16.8 31.4 13.0 27.4 13.7 28.6 25.0 51.5 27.3 45.1 18.3 35.4
CC-V 12.9 25.7 16.9 32.8 13.3 28.7 13.9 29.0 26.0 55.7 27.5 58.6 18.4 38.4

CC-AV 9.24 19.8 11.1 26.2 10.1 19.7 10.3 19.7 20.1 44.5 21.1 40.8 13.7 28.5
Boost (%) 33.4 29.4 33.8 14.3 22.3 27.4 24.2 29.4 19.6 9.2 22.5 9.5 25.4 19.5

Table 5.1: Quantitative Evaluation on the DISCO Benchmark [31] based on regular and several
low-quality images settings. (Here R,B denote the hyper-parameters being used for the illumi-
nation decay-rate and Gaussian-noise standard deviation computations respectively as defined in
[31])

5.5.1 Experiments on Audio-Visual Dataset

DISCO [31] is an up-to-date and only-available diverse audio-visual crowd dataset. It contains a to-

tal of 1,935 high-resolution images (1,920×1,080) and corresponding one-second audio signals.

We have 170,270 people annotations in total with the minimum, maximum and average people

per image equal to 1, 709, and 88, respectively. The (train, validation, test) split is pre-defined as

(1435, 200, 300) respectively. We evaluate our network using both audio-visual and vision-only

versions. Audio-visual (CC-AV) version is the same as discussed above, whereas the vision-only

variant (CC-V) only uses the image input and is detailed in sub-section 5.5.2. As per the standard

practice, we compare the proposed scheme with the state-of-the-art for three pre-defined image

settings.

Regular Images. In this case, we use test images without any modification. The results, as shown

in Table 5.1, indicate that both proposed network versions outperform the state-of-the-arts under all

evaluation metrics with CC-AV giving 33.4% and 29.4% error decrease for the MAE and RMSE

metrics respectively. CC-AV performs significantly better than the CC-V, which directly implicates

the benefit of including the audio modality.

Low-Quality Images. To check the robustness under severe conditions, we evaluate the model on

three pre-defined standard settings: low-resolution, low-illumination, and strong noise. In the low-
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Figure 5.6: Occluded images setting based evaluation using MAE metric.

resolution setting, images are just 128× 72 in size. During the low-illumination study, random

brightness reduction is followed by the Gaussian noise addition as defined in [31]. Lastly, the

Gaussian noise has been added in the strong noise case as given in [31]. Observing the results for

all three settings, as shown in Table 5.1, the proposed model (CC-AV) appears as the best choice

with improvement up to 33.8% and 29.4% for MAE and RMSE respectively. The CC-V variant

performance decreases in such extreme conditions because the visual information alone proves

insufficient without any further aid.

Occluded Images. In this setting, we occlude the image with a black rectangle using the Occlusion

Rate (OR). The OR value lies in [0,1], meaning that image occlusion ranges from no occlusion

(OR = 0) to completely occluded (OR = 1). The results, as shown in Fig. 5.6, show that the

CC-AV model gives the best performance for the whole OR range as compared to the state-of-the-

art methods (AudioCSRNet[31] and CSRNet [54]) on the MAE metric. All methods experience

performance degradation as we increase the OR value due to the lack of more visual information.

Our CC-V model yields a bigger error jump than CC-AV with the increase of OR values because

it only relies on the visual information. Interestingly, in the case of no visual information (OR=1),
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ShanghaiTech [127] UCF-QNRF [35]
Method MAE RMSE MAE RMSE

MCNN [127] 110.2 173.2 277 426
Switch-CNN [85] 90.4 135.0 228 445

CSRNet [54] 68.2 115.0 - -
CL[35] - - 132 191

CAN [59] 62.3 100.0 107 183
RRP [13] 63.2 105.7 93 156

HA-CCN [95] 62.9 94.9 118.1 180.4
ADSCNet [6] 55.4 97.7 71.3 132.5
RPNet [119] 61.2 96.9 - -

PRM-based[83] 67.8 86.2 94.5 141.9
CC-V (Ours) 58.7 81.3 75.4 125.6

Table 5.2: MAE and RMSE based evaluation on image-only datasets.

CC-AV still performs better, indicating its robustness and better utilization of the audio-modality

as compared to the best audio-visual models.

5.5.2 Experiments on Image-only Datasets

First, we discuss the design of the image-only variant (CC-V) of the proposed network. The CC-V

structure remains the same as the CC-AV except that there is no available audio information (A)

and thus the following changes have been made. 1) No A based operation in the MSB three-branch

fusion, PIR, PCE, and Co-attention processes. 2) Matrix operations required to compute PIRPRE

have been replaced by the same set of operations being used for PCE. 3) Replace AEXT D with V T

in the co-attention module.

We compare our CC-V model on two image-only diverse benchmark datasets: UCF-QNRF

[35] and ShanghaiTech Part-A [127]. The UCF-QNRF dataset comprises of 1,535 (1,201 train,

334 test) images with total 1,251,642 people annotations. On the other hand, ShanghaiTech dataset

contains a diverse collection of 482 crowd images (300 train, 182 test). To avoid over-fitting

in the case of ShanghaiTech dataset training, we use the model pre-trained on the UCF-QNRF

benchmark, and train for only 250 epochs instead of 500. The images have been resized to 1,024×
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MAE RMSE
Ablation Setting MAE Increase RMSE Increase

(%) (%)
W/o explicit PIR, PCE 16.0 42.3 28.2 29.8

W/o PIR branch in AVT 16.7 44.7 27.6 28.2
W/o PCE branch in AVT 15.5 40.4 28.1 29.5

W/o AVT 18.9 51.1 39.7 50.1
W/o CCM 17.3 46.6 31.4 36.9

W/o AT in the MSB fusion 13.9 33.5 25.0 20.8
W only S1 branch in MSB 14.3 35.4 26.8 26.1

Default (CC-AV) 9.24 - 19.81 -

Table 5.3: Seven independent ablation studies on the effect of PIR, PCE, MSB, AVT and CCM
components on the proposed network performance.

576 with zero-padding if required. The results on both datasets are shown in Table 5.2, where

the proposed model CC-V yields the best performance for the RMSE metric (5.2% improvement

for UCF-QNRF and 5.7% for ShanghaiTech) amid producing reasonable results for the MAE as

compared to the state-of-the-art schemes. These results demonstrate that the proposed scheme is

also practical, robust, and highly effective in vision-only scenarios.

5.5.3 Ablation Study

In addition to the previous sub-section 5.5.1 analysis on audio-visual DISCO dataset various set-

tings, here we further analyze and investigate the effect of different components on overall network

performance during the following independent ablation studies.

W/o explicit PIR, PCE. No PIR vector output as well as no LossPRE and LossPCE , i.e. LossTOTAL =

LossDM.

W/o PIR or PCE branch in AVT unit. In the first setting, we exclude the whole PIR computation

stream and LossPIR, and only use the PCE stream and vector. In the second setting, we do vice

versa by only keeping the PIR stream, and LossTOTAL = LossPIR +LossDM.

W/o AVT. No AVT module being deployed. Consequently, the CCM block uses V instead of

AVAT T D.
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Figure 5.7: Ground truth (GT) density-map and crowd-count (CC) based qualitative comparison
(From Left to Right Column: Input Image, Audio Log Mel-Spectogram, GT density-map, Au-
dioCSRNet network [31] estimated density-map, CC-V model (ours) density-map, CC-AV (ours)
density-map). Each row respectively indicates following four cases: Regular Image (1024×576),
Low-Resolution (128×72), Noisy case (σ = 50/255), and 50% Occluded case.

W/o CCM. No CCM module usage. The AVAT T D is considered as DMPRE .

W/o AT in the MSB fusion. No Audio information (A) has been used in any MSB three-branch

fusion process.

Using only single (S1) branch. We only use one (S1) branch in the MSB multi-branch structure.

The results are listed in Table 5.3, where we can observe that the (MAE,RMSE) errors increase

by a noticeable margin in each case with as low as (33.5%,20.8%) and as high as (51.1%,50.1%)

respectively. These evaluations indicate the effective importance of several network components

including PIR, PCE, MSB, AVT, and CCM modules.

5.5.4 Qualitative Analysis

We present a few visual results as shown in Fig 5.7. These results contain both regular (top row)

and low-quality image cases (last three rows). For each input image, we display the input image,
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Log Mel-Spectrogram (LMS), ground-truth crowd density-map and count (CC) as well as pre-

dicted density-map and crowd-estimate (CE) being generated by our CC-AV, CC-V networks, and

state-of-the-art AudioCSRNet [31]. We can easily observe that the proposed audio-visual model

(CC-AV) yields the most effective and fine-grained results as compared to the visual-only variant

(CC-V) and AudioCSRNet [31] in both regular and low-quality cases. However, the CC-V model

experiences more error increase in low-quality cases due to lack of audio modality. These re-

sults also demonstrate that the proposed CC-AV network has significantly improved performance

because of the better inclusion of the audio modality. Interestingly, the CC-AV performance is

naturally better for regular images as visual information fades away in low-quality cases. One

mentionable case is that of 50% random image occlusion (last row of Fig. 5.7). CC-V highly

over-estimates in the non-occluded regions (highlighted in the red rectangular area) to compensate

for the occluded area, and lacks the audio-modality aid to better estimate for the hidden region.

Similarly, AudioCSRNet [31] also over-estimates in the same manner due to under-utilization of

the audio information. On the other hand, our CC-AV model performs more robustly for both

occluded and non-occluded regions.

5.6 Conclusion

In this work, we have presented a new audio-visual multi-task network for effective people count-

ing by introducing explicit PIR and PCE information for better modalities association, and also

producing a third run-time modality. This modality greatly helps the cross-modality fusion pro-

cess to yield a better crowd estimate. We have also deployed a unique multi-branch structure to

extract rich visual features and also proposed the image-only variant of our model. Experimental

evaluation on standard benchmarks reveals the superior performance of our networks.
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Chapter 6

Application of Multi-scale Crowd Counting network to the

Scene-text Recognition

Here, we apply multi-scale fusion and attention-based crowd counting technique as given in Chap-

ter 4 to another important and active computer vision task i.e. Scene Text Recognition. We propose

a new text recognition network for scene-text images. Many current state-of-the-art methods em-

ploy the attention mechanism either in the text encoder or decoder for the text alignment. The

encoder-based attention yields promising results, but these schemes inherit noticeable limitations.

They perform the feature extraction (FE) and visual attention (VA) sequentially, which bounds the

attention mechanism to rely only on the FE final single-scale output. Moreover, the utilization of

the attention process is limited by only applying it directly to the single scale feature-maps. To

address these issues, we propose a new multi-scale and encoder-based attention network for text

recognition that performs the multi-scale FE and VA in parallel. The multi-scale channels also un-

dergo regular fusion with each other to develop the coordinated knowledge together. Quantitative

evaluation and robustness analysis on the standard benchmarks demonstrate the better effective-

ness of the proposed network in most cases. Most content of this chapter comes from our paper

[80].

6.1 Introduction

Scene text recognition aims at extracting the screen text from the given input image. It serves as an

active research area in the field of computer vision. The recognition task comes up with many key

challenges and issues like huge background variation in and across different images, different font
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styles, big fluctuation in text appearance and scale. Automated text recognition remains more de-

sirable as manual system proves to be very tedious and time-consuming. Recently, deep learning-

based automated methods have shown superior performance in this domain. Some schemes per-

form character-level text recognition, while most methods do word/sentence level recognition. The

later one is more preferred due to relatively easier and less tedious annotation process.

Among the best state-of-the-art deep networks, most of them [109, 121, 15, 88, 90, 5, 51] are

based on the attention mechanism [4, 101]. The purpose of the attention mechanism is to align the

text characters followed by their recognition. Generally, these methods incorporate the attention-

based alignment and recognition into the decoder part of the network. But these networks inherit an

important limitation as the decoder gets highly over-burdened and sensitized with the dual task of

text alignment and recognition. Consequently, it generates huge error propagation and aggregation

within the decoder and thus compromises the effectiveness of the whole network. One possible

solution is to decouple the attention/alignment mechanism from the decoder and integrate it with

the feature extraction process inside the encoder block of the network. Recently, Wang et. al. [109]

proposed such decoupled attention network (DAN) with promising results. However, the encoder

first sequentially performs the feature extraction (FE) followed by the visual attention (VA) process

as shown in Fig. 6.1(a). This limits the DAN network efficacy as the attention mechanism only

depends on and utilizes the final output feature-maps from the FE module. Consequently, the

attention is not applied directly to each of the multi-scale feature-maps separately, but only to the

final set of accumulated single-scale channels. Therefore, our focus revolves around two main

objectives in this work:

• Design a scale-wise visual attention-based scene text recognition network to address the key

issues and challenges in this domain.

• Utilize the encoder-based and scale-wise attention process in parallel to the feature extrac-

tion (FE) instead of standard sequential processing from FE to the Visual attention module.
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(a) Sequential FE and Attention (Alignment) [109]

(b) Parallel scale-wise FE and Alignment

Figure 6.1: (a) Recent state-of-the-art Encoder-based attention mechanism [109] sequentially per-
forms the feature extraction (FE) followed by the (attention) alignment module. (b) The proposed
method performs the parallel FE and visual attention (VA) process on feature-maps with different
scales within the encoder.

In this work, we propose a new multi-scale and scale-wise visually attended text recognition

network to achieve the above objectives. As shown in Fig. 6.1(b), the feature extraction and vi-

sual alignment/attention (FEVA) have been done in parallel on different scale features within a

single module, followed by the recognition-focused decoder to extract the scene text. In this way,

we separately attend feature-maps from different scales directly instead of just attending the final

single-scale channels. Moreover, we also deploy different and simpler visual attention process in

contrast to the conventional deep up- and down-scaling FCN [61] based visual attention being used
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in DAN [109]. Several experiments on different standard benchmark datasets demonstrate the ef-

fectiveness of our scheme on both regular and irregular scene-texts as presented in the experiments

section 6.5.

6.2 Our Contributions

The main contributions of this work include:

• We propose a new parallel FEVA-based encoder and multi-scale text recognition network to

address the key recognition task challenges and limitations in similar state-of-the-art archi-

tectures.

• We deploy the visual attention mechanism in an effective and unique way on multiple scales

to enable the network in making a clearer distinction between the foreground and background

pixels.

• Experimental evaluation on the standard benchmark datasets demonstrates the fact that the

proposed network outperforms the state-of-the-arts in most cases on both regular and irreg-

ular scene-texts.

6.3 Related Work

Text recognition problem remains an active research area in the computer vision field due to differ-

ent challenges like varying text scale and size, partial occlusion, and non-axis aligned text. In pre

deep-learning era, document text recognition remained the main focus. [8] adopted the binarization

process to extract the segmented text characters. But these methods are not applicable to scene-text

due to different nature of issues like varying scale and style, and complex background. Most of
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the classical recognizers utilized the low-level information including the connected components

[70], gradients descriptors (HoG) based on some feature-extraction mechanism [106]. Recently,

deep-learning based method hugely surpass and outperform the traditional methods. They can be

categorized as segmentation-based and segmentation-less text recognizers.

Segmentation-based methods undergo the character-wise detection followed by the word for-

mation. [7] designed five hidden fully-connected layers and ReLU Units [69] with softmax-based

classification. [108] developed an CNN with convolution and average pooling layers and the non-

maximum suppression for character-wise text recognition. [38] used weight-shared CNN for three

sub-tasks of dictionary, character sequence, and bag-of-N-gram encoding to perform the text recog-

nition.

The segmentation-less schemes directly recognize the whole word or sentence from the given

input image. [39] performed an CNN-based 90,000-way classification, where each category/class

corresponds to one whole word. Shi et al. [88] integrated the CNN and RNN-based network to

extract the string features, and the Connectionist Temporal Classification (CTC) based decoder to

finally yield the recognized text. [89] employed the attention mechanism for text alignment before

the recognition. Most following methods utilize the attention mechanism [4, 101] in one way or

the other. Cheng et al. [15] designed the deep focused attention network (FAN) after observ-

ing and aiming to address the "attention-drift" problem in the recognition process, but it requires

character-level annotations. [89, 63, 125] aimed at addressing non-axis aligned and distorted text

via attention-based mechanism. [97, 2] utilized the recurrent neural networks (RNNs) with Long

Short Term Memory (LSTM) networks to perform the sequential word recognition. [27] integrated

the CNN and RNN to design the deep-text recurrent network (DTRN) for recognizing text. Shi

et al. [90] explicitly handled the text rectification by using the control points based rectification

module and also applied the attention-based bi-directional LSTM decoder for text prediction. Li

et al. [51] proposed a simple LSTM-based encoder-decoder framework via the 2D attention pro-

cess. Wang et al. [109] designed the decoupled attention network (DAN) that performed the text

alignment via convolution based visual attention. Yu et al. [121] proposed the semantic reasoning
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Figure 6.2: The proposed text recognition network. Initially extracted features (X) from the input
image (I) first pass through the multi-scale feature-extraction (FE) and visual attention (VA) based
encoder (EN). The encoder performs both intra-scale processing and inter-scale fusion between
three scale-modules (S1,S2,S3). During the intra-scale processing, the channels are processed
with the residual connections-based residual structures (RS) as well as undergo the VA mechanism
via the visual attention block (VAB), followed by their concatenation to produce the respective
scale-module output. Consequently, the encoder outputs three sets of feature-maps that go through
the merging head (MH) for channel and resolution adjustment. Finally, the text decoder (DE)
outputs the recognized text character-wise.

network (SRN) for irregular scene-text that fuses the visual attention and semantic context modules

while avoiding the RNN-based sequential processing.

Although these schemes produce good results, yet they fail to utilize the promising and benefi-

cial attention mechanism explicitly on different multi-scale features. In this work, we work towards

utilizing the multi-scale feature-extraction and visual-attention in parallel for better efficacy.

6.4 Proposed Approach

The chapter proposes a new scene-text recognition network to address the major recognition chal-

lenges as detailed in Sec. 6.1, as well as performs the visual attention on multi-scale feature-maps
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directly in parallel. The proposed network, as shown in Fig. 6.2, downscales the input image

I (∈ R3∗H∗W ) resolution by half (C ∗ H
2 ∗ W

2 ) using the initial convolutional layer. The resultant

feature-maps go through the text encoder (EN). The EN block comprises of three parallel multi-

scale modules (S1,S2,S3) with each module handling one specific scale. Each multi-scale module

also visually attends the feature-maps in parallel to their conventional deep layers-based process-

ing, followed by the concatenation together to generate their respective output. The visual attention

helps the model to have a clearer understanding between the foreground and background pixels.

Inspired by the high-resolution networks [105, 99], these multi-scale modules also fuse their chan-

nels on regular intervals to develop the accumulated knowledge together. The encoder outputs

three multi-scale channels (FS1,FS2,FS3) that are merged together via the merging head (MH). The

text decoder (DE) finally outputs the recognized text. The proposed network architecture consists

of three major components: Text Encoder (EN), Merging Head (MH) and Text Decoder (DE) as

detailed next.

6.4.1 Encoder (EN)

The purpose of the encoder is to simultaneously perform the feature extraction (FE) and visual

attention/alignment (VA) on the multi-scale feature-maps. The input channels (X ∈ RC∗H
2 ∗

W
2 ) pass

through three multi-scale modules(S1,S2,S3) to finally yield three respective output feature-maps

with different dimensions. The encoder processes the input feature-maps as follows:

(FS1,FS2,FS3) = Encoder(X), (6.1)

Where FS1 ∈ R2C∗H
2 ∗

W
2 , FS2 ∈ R4C∗H

4 ∗
W
4 , FS3 ∈ R8C∗H

8 ∗
W
8 and C indicates the total number of

input channels. As we move from S1 to S3, the number of channels become twice as many as their

subsequent upper scale. Similarly, the feature-maps resolution (scale) decreases to half with each

scale-module as we move from S1 to S3. It may be noted that each scale module keeps the channel

resolution same throughout that module [99, 105].
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Figure 6.3: Visual Attention Block (VAB). The input channels go through the convolution opera-
tion for four repeated times. Subsequent single-filter 1×1 convolution and sigmoid function give
the segmentation map (SM). The SM undergoes the element-wise multiplication with the original
input channels to yield the visually attended channels (VAC) that are channel-adjusted to become
the VAB output.

6.4.1.1 Intra-Scale Processing

Within every scale module (S1,S2,S3), the input channels pass through one or more residual struc-

tures (RS) and the visual attention process.

Residual Structure (RS). Each RS block comprises of five residual units (RU). The RU unit

is a 3-layered residual building block as given in [26] that contains three convolution layers (1×

1,3 × 3,1 × 1) and a residual connection. Each convolution in the chapter is followed by the

Batch-Normalization (BN) [36] and the ReLU activation [69] unless stated otherwise. The RS

blocks are denoted as RS(xy), where x denotes the scale-module number (1,2 or 3) and y indicates

their location or index within that module (starting from left to right). Thus, RS12 denotes the

second RS block in the S1 scale-module.

Visual Attention Block (VAB). The scale-modules (S1,S2,S3) also visually attend (align) their

feature-maps independently. This helps the network in making a better understanding regarding

the foreground and background image pixels at different feature-scales. The first RS block output
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Figure 6.4: Merging Head (MH). The higher scale-modules (S1,S2) output channels (FS1,FS2) are
max-pooled before concatenation with the S3 scale-module output. Convolution and reshaping
operations finally output the K-dimensional vectors with MaxLength such vectors in total.

channels (∈ RC′∗H ′∗W ′
) in any scale-module undergo the attention mechanism via the VAB block.

The attended feature-maps are then concatenated back at the end of the respective scale-module.

The VAB process is shown in Fig. 6.3, where the input feature-maps first go through the four con-

secutive convolution layers. Next, a single feature-map is obtained via a simple 1×1 convolution

operation. The sigmoid function is then applied on the resultant channel to obtain the segmenta-

tion map (SM ∈R1∗H ′∗W ′
). The SM undergoes element-wise multiplication with the original input

feature-maps to yield the visually-attended channels (VAC). The VAC feature-maps serve as the

VAC module final output after being channel-adjusted via the 3× 3 convolution operation. The

VAB input feature-maps X ′ ∈ RC′∗H ′∗W ′
get the visual attention as follows:

F ′′ =VAB(X ′), (6.2)

Where F ′′ ∈RC′′∗H ′∗W ′
and we set C′′ =C′. This attention process is different from the conven-

tional and complex convolutional and deconvolutional layers based mechanism [109], and proves

to be more effective as demonstrated in the experiments Sec. 6.5.

6.4.1.2 Repetitive Inter-scale Fusion

Inspired by the high-resolution networks [105, 99], the scale-modules (S1,S2,S3) also fuse chan-

nels with each other on regular intervals. It enables the network to form the accumulated and
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coordinated knowledge from the multi-scale channels and learn the valuable information better.

To fuse the higher-scale source channels into the lower-scale target feature-maps, they undergo the

(n+1) times 3×3 convolution operation (with stride: 2, padding: 1). Here n (= 0,1) denotes the

number of scale-modules in-between the source and target scale-modules. Thus, fusion from S1

channels into S3 requires two such convolution operations on S1 scale feature-maps to down-scale

them to the S3 scale. Similarly, the lower-to-higher scale fusion requires the bilinear upsampling

of the lower-scale source feature-maps. No re-scaling transformation is done when the source and

target scale-modules are same. Once all source channels have been adjusted for channels quantity

and target scale, they undergo the summation-based fusion with the target channels to obtain the

fused feature-maps.

6.4.2 Merging Head (MH)

The encoder outputs three separate sets of feature-maps (FS1,FS2,FS3) from the respective scale-

modules (S1,S2,S3). The merging head (MH) combines them to output the feature-maps to be

used for the text decoding. The MH block, as shown in Fig. 6.4, down-samples the S1 and

S2 output channels using the max-pooling (MP) operation, so as to rescale them to the S3 output

channels (FS3) resolution. Next, they are concatenated together followed by the channel-adjustment

via the convolutional layer. The resultant channels (∈ RMaxLength∗H
8 ∗

W
8 ) are reshaped into the K-

dimensional vectors to give the MH final output (FMH ∈ RMaxLength∗K). Thus, the input channels

are merged as follows:

FMH = MH(FS1,FS2,FS3), (6.3)

Here, the maxLength refers to the maximum length of text characters to be recognized. The

output vectors are then routed to the text decoder for further processing.
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Figure 6.5: Text Decoder (DE). The decoder predicts the recognized text character-by-character
via the GRU and the classification layers. Here eos means the end-of-sequence character.

6.4.3 Text Decoder (DE)

The responsibility of our text decoder is to perform recognition only. That makes it more focused

towards one task rather than the dual task of text alignment and recognition. We adopted the text

decoder from the DAN network [109]. As shown in Fig. 6.5, the MH output channels (FMH ∈

RmaxLength∗K) go through the GRU [17] cell one-by-one at time (t ′ = 1,2,3, ...maxLength) as K-

dimensional vectors. The classification layer outputs the recognized text character at time t ′ with

the output p(yt ′) as follows:

p(yt ′) = so f tmax(w∗hiddent ′ +b), (6.4)

Where hiddent ′ denotes the GRU cell hidden state, given as follows:

hiddent ′ = GRU((embdt ′−1,Channelt ′),hiddent ′−1), (6.5)

101



Where embdt ′−1 is the embedding belonging to the previous classification yt ′−1. The network

loss function is defined as follows:

L =−
T ′

∑
t ′=1

logP(y′t ′|Input,θ) (6.6)

Where y′t ′ is the actual or ground-truth text character at time t ′ and θ denotes the learnable

parameters of the network.

6.5 Quantitative and Qualitative Evaluation

This section deals with the experimental evaluation of the proposed network. First, we discuss the

quantitative evaluation on seven standard benchmark datasets followed by the ablation study. At

the end, we analyze the visual results.

6.5.1 Experiments on Standard Benchmarks

Datasets. To evaluate the effectiveness of the proposed network, we test on seven different scene-

text datasets. They are either regular (IIIT-5k [67], IC03 [62], IC13 [44], SVT [106]) or irregular

(IC15 [43], SVT-P [73], CUTE80 [77]) scene-text datasets.

IIIT-5k [67] is an internet-based scene-text dataset that contains 3,000 cropped text images for

testing.

Street View Text (SVT) [106] comprises of 647 text-based test images collected via Google

Street View. For diversity and variation, drastic corruption has been incorporated in the form of

noise, blurriness and low resolution.

ICDAR 2003 (IC03) [62] has 251 scene-text images with 867 test bounding boxes. As per

the standard protocol [106], 860 cropped images have been retained after removing words with

non-alphanumeric characters or less than 3 characters.

ICDAR 2013 (IC13) [44] is a regular scene-text dataset that contains total 1,015 cropped

images, and most of them come from the IC03 dataset. Using the standard practice as given in
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[106], images with non-alphanumeric characters or less than three characters have been filtered-

out.

ICDAR 2015 (IC15) [43] contain irregular scene-text images taken via the Google Glasses

with slight focusing and positioning. Only 1,811 test images have been utilized after removing

some with extreme distortions as part of the standard pre-processing practice [15].

SVT-P [73] is an irregular scene-text dataset with 639 cropped images taken from Google street

view. Mostly, they are single-angle based and highly perspective-distorted images.

CUTE80 [77] mainly deals with curved scene-text and consists of 80 images. We cropped 288

test samples from these high-resolution images using their bounding-box annotations.

Implementation Details. The input image gets resized with fixed height of 32 pixels and width

up to 128 based on the aspect ratio. The proposed network is trained using two synthetic datasets

until convergence: Synth90k [38] and SynthText [24]. Batch size of 64 has been used with 32

images each from Synth90k and SynthText. The value of total channels (C) in the encoder has

been set to 32, so the scale-modules (S1,S2,S3) contain (32,64,128) channels respectively after

every intra-scale processing step. MaxLength is set to 25, and the total number of character classes

is 94 including the upper- and lower-case alphabets, 0-9 digits, and 32 ASCII punctuation symbols.

The number of hidden units in the decoder equals to 256. The ADADELTA-based optimization

[124] has been employed with the initial learning rate of 1.0 and decreased to 0.1 after third epoch.

Experimental Evaluation. Here, we compare our method quantitatively with the current state-of-

the-art models. The comparison is done without using the lexicon information as it is generally the

case in practice. As per the standard convention, the evaluation is done using the case-insensitivity

for word accuracy computation. The results are shown in Table 6.1, where our method outperforms

other methods on 4 out of 7 datasets while performing reasonably competitive on the remaining

three benchmarks. In comparison to the specifically designed rectification-based methods [90, 125,

63], our model gives better or competitive results without any rectification. For the regular scene-

text dataset (IIIT-5K and IC13), we obtain an increase of (0.8% and 1.1%) respectively. While for

the irregular scene-text datasets (IC15 and SVT-P), the proposed network improves the accuracy
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Rect. Regular Datasets Irregular Datasets
Method IIIT-5K SVT IC03 IC13 IC15 SVT-P CUTE80

Jaderberg et. al[39] - 80.7 93.3 90.8 - - -
Jaderberg et. al[37] - 71.7 89.6 81.8 - -

Shi et. al[88] 81.2 82.7 91.9 89.6 - - -
Lyu et. al[64] 94.0 90.1 94.3 92.7 76.3 82.3 86.8
Xie et. al[113] 82.3 82.6 92.1 89.7 68.9 70.1 82.6
Liao et. al[56] 91.9 86.4 - 91.5 - - -

Cheng et. al[15] 87.4 85.9 94.2 93.3 70.6 - -
Cheng et. al[16] 87.0 82.8 91.5 - 68.2 73.0 76.8

Bai et. al[5] 88.3 87.5 94.6 94.4 73.9 - -
Yang et. al[118] - - - - - 75.8 69.3

Shi et. al[90] ✓ 93.4 89.5 94.5 91.8 76.1 78.5 79.5
Zhan et. al[125] ✓ - 91.3 76.9 79.6 83.3
Yang et. al[117] 93.3 90.2 91.2 93.9 78.7 80.8 87.5

Li et. al[51] 91.5 84.5 - 91.0 69.2 76.4 83.3
Liao et. al[55] 93.9 90.6 - 95.3 77.3 82.2 87.8

Wang et. al[109] 94.3 89.2 95.0 93.9 74.5 80.0 84.4
Yu et. al[121] 94.8 91.5 - 95.5 82.7 85.1 87.8

Ours 95.9 90.8 94.6 96.3 83.9 86.0 86.9

Table 6.1: Quantitative Evaluation on the Standard Benchmarks. The results demonstrate the
proposed scheme as the most effective in most cases as compared to SOTA methods. The bold and
underline numbers indicate the best and the second-best methods respectively.

by (1.4% and 1.0%) respectively . The accuracy boost is mainly due to the inclusion of multi-

scale visual attention and inter-scale fusion within the encoder. It is empirically shown during the

ablation study as given in next paragraphs.

Ablation Study. We perform five different ablation experiments to analyze different components

of the proposed network.

1) Effect of VAB Block: The VAB block provides the most important visual attention mecha-

nism that improves the network performance. As shown in Table 6.2, the network under-performs

on both regular and irregular scene-text datasets without using the VAB block. Thus, it’s imperative

to include VAB block.

2) Number of Residual Units: The number of residual units (RU) in the RS block plays an

important role in better feature extraction. We experimented with different RU units quantity per
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VAB Block Effect
IIIT5k SVT IC13 IC15 SVT-P CUTE80

w/o VAB 86.6 81.9 88.8 77.4 80.7 75.2
w VAB (ours) 95.9 90.8 96.3 83.9 86.0 86.9

Number of Residual Units (RUs) per RS Block
IIIT5k SVT IC13 IC15 SVT-P CUTE80

1 61.5 58.7 61.2 55.3 59.5 62.1
2 72.6 65.5 68.0 61.0 65.9 67.0
3 83.0 76.1 77.9 71.7 74.8 77.5
4 90.1 84.9 83.5 79.6 82.3 84.2

5 (ours) 95.9 90.8 96.3 83.9 86.0 86.9
6 94.3 88.8 95.6 84.0 85.5 86.2

S2 and S3 scale-modules Effect
Scale-Modules IIIT5k SVT IC13 IC15 SVT-P CUTE80

S1 only 87.4 81.5 90.1 79.9 81.3 82.1
S1,S2 only 92.9 87.3 93.6 82.2 83.7 84.5

S1,S2,S3 (ours) 95.9 90.8 96.3 83.9 86.0 86.9
S1,S2,S3,S4 95.1 90.6 85.4 82.9 86.5 86.0

MaxLength Effect
MaxLength IIIT5k SVT IC13 IC15 SVT-P CUTE80
25 (ours) 95.9 90.8 96.3 83.9 86.0 86.9

50 95.5 90.7 96.2 83.7 85.9 86.9
75 95.6 90.7 96.1 83.8 86.0 86.8
100 95.8 90.6 96.2 83.6 85.9 86.9

Table 6.2: Ablation studies on the proposed network. Several experiments on different components
of the proposed network indicate their vitality.

RS block as shown in Table 6.2. As per the results, we found five RU units per RS block to be the

most effective choice with the highest accuracy.

3) Effect of S2 and S3 scale-modules inclusion: As given in Table 6.2, using the S2 and S3

scale-modules in addition to S1 increases the network effectiveness. However, adding another

scale-module S4 does not enhance the accuracy significantly. Thus, the (S1,S2,S3) combination

has been employed.

4) MaxLength Value Selection: The maxLength value has to be selected so that it covers the

maximum length an output word can possibly have in a dataset. Beyond that, increasing it should

not have any noticeable effect on the network efficacy. As given in Table 6.2, increasing the
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Figure 6.6: VAB convolution quantity analysis graph. The graph indicates that repeating the con-
volution operation four times in the VAB block before the segmentation-map generation yields the
optimal accuracy as tested on four different datasets.

maxLength value from default value of 25 does not alter the performance by much.

5) Total Convolution Operations in VAB Block: We investigate the effect of total number of

convolution operations before the segmentation map creation. To analyze the effect, we perform

convolution operations quantity experiments on four datasets (IIIT5k, IC13, CUTE80, SVT-P). The

results are shown in Fig. 6.6, where repeating four convolution operations before the segmentation

map generation in the VAB block proves to be the best choice.

Robustness Analysis. Here, we check for robustness of the proposed scheme against different

modifications on the input images. We compare our scheme with two recent SOTA methods (DAN

[109] and CA-FCN [56]) on two datasets (IIIT-5K [67] and IC13 [44]). Following the practice as

given in [109], the variations introduced into these datasets are as follows:

IIIT-padded: 100% padding of the input images in IIIT-5k in both horizontal and vertical di-

rection via border pixels replication. IIIT-r-padded: Stretching the image vertices using a random

scale value up to 20% for both height and width respectively. Next, border pixels are repeated for
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IIIT IIIT-padded IIIT-r-padded IC13 IC13-expanded IC13-r-expanded
Method acc acc diff. change (%) acc diff. (%) acc acc diff. (%) acc diff. change (%)

[56] 92.0 89.3 -2.7 2.9 87.6 -4.4 4.8 91.4 87.2 -3.7 4.1 83.8 -6.9 7.6
1D [109] 93.3 91.5 -1.8 1.9 88.2 -5.1 5.4 94.2 91.2 -3.0 3.2 86.9 -7.3 7.7
2D [109] 94.3 92.1 -2.2 2.3 89.1 -5.2 5.5 93.9 90.4 -3.5 3.7 86.9 -7.0 7.5

Ours 95.9 94.0 -1.9 2.0 91.4 -4.5 4.7 96.3 92.5 -3.8 3.9 89.5 -6.8 7.1

Table 6.3: Robustness Analysis. This study demonstrates the proposed model better robustness
towards different changes in the input images. (acc: accuracy, diff.: Accuracy Difference of per-
formance from the original dataset, change (%): Percentage change (decrease) in the accuracy).

filling it. Finally, we crop the axis-aligned rectangles. IC13-expansion: The input images in IC13

are expanded into image frames with relatively extra 10% height and width followed by cropping.

IIIT-r-expansion: Expansion of the IC13 images using a random scale up to 20% height and

width, followed by cropping the axis-aligned rectangular images.

As shown in Table 6.3, it can be observed that the proposed method appears as the most stable

and resilient to these input distortions and variations in majority cases, hence, demonstrating the

robustness of our scheme.

6.5.2 Qualitative Analysis

Here, we present some good and bad qualitative results. We evaluate the proposed scheme with

and without the visual attention block (VAB). The results are shown in Fig. 6.7, where the first two

rows indicate the good results followed by the failure cases in the last row. Following the practice

in [121], under each image, the first line shows the text recognition made by the proposed scheme

without using the VAB block followed by our network text prediction with the VAB module in

the second line. Characters colored as red indicate wrong predictions. As shown in the good

results, the proposed scheme without the VAB block lacks the visual attention and struggles to

differentiate between highly similar characters (e.g. ’e’ and ’c’ or ’o’ and ’a’) when they lack

clear visual exposure, skewed perspective, or partial occlusion. The VAB block coupled with the

multi-scale fusion helps in overcoming these issues and produces accurate results as shown.

The bad results, as shown in the last row of Fig. 6.7, mainly occur when the visual attention
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Figure 6.7: Ground truth (GT) scene-text based qualitative comparison. First two rows demonstrate
the good prediction results followed by the bad recognition cases in the last row. Under each image,
the first line indicates our network text prediction without using the VAB block, whereas second
line shows our model with the VAB. The red-colored characters indicate the wrong predictions.

does not align the characters perfectly and results in failure as compared to the ground-truth (GT)

recognition text.

6.6 Conclusion

In this chapter, we proposed a new multi-scale and scale-wise visually attended text recognition

network to address key scene-text challenges. The multi-scale feature extraction and visual atten-

tion have been performed in parallel to utilize different feature scales explicitly in a more effective

way. The network also undergoes multi-scale fusion with each other to develop the coordinated

information. Experimental evaluation on standard benchmarks indicates better accuracy in most

cases as compared to the SOTA methods.
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Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation and present some ideas for the future work. Some part of

this chapter comes from our research papers [79, 80, 81, 82, 83, 84].

7.1 Conclusion

Here, we first present the concluding remarks regarding our uni-modal research work, followed by

a discussion about the multi-modal domain.

7.1.1 Uni-Modal Crowd Counting Networks

We extensively study the crowd estimation problem for uni- and multi-modal inputs and design

several novel modules and networks to address key issues and challenges in this domain amid

mitigating major SOTA limitations. We propose a conceptually simple yet effective and plug-

and-play based patch rescaling module (PRM) to address the major huge crowd diversity issue in

crowd counting problems. We present three new uni-modal and uni-branch crowd counting multi-

task frameworks that utilize the lightweight PRM module instead of computationally expensive

recent multicolumn or multi-regressor based architectures. We devise a new multi-resolution and

multi-branch feature-level fusion based end-to-end crowd counting approach for still images that

effectively deals with significant variations of crowd-density, lighting conditions, and large per-

spective. We also propose an alternative patch re-scaling module by more effectively using the

input priors. Unlike the PRM, the proposed module fully utilizes all three crowd density levels

without requiring any compromising or additional crowd-density classification process. We also
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present a novel multi-resolution and multi-task PRM based visually attended crowd counting net-

work for static images that effectively address major crowd counting challenges, including the

issues of crowd-like background regions and huge crowd-variation. We deploy the plug-and-play

PRM module so as to further push its boundaries and utilize it more effectively as compared to its

previous deployments. We employ the visual attention mechanism in a unique and effective way

on early-stage feature-maps that facilitate the later-stage channels to better understand the fore-

ground regions. Experimental evaluation demonstrates that the proposed networks outperform the

state-of-the-art methods in majority cases on four different benchmark datasets with up to 12.6%

improvement in terms of the RMSE evaluation metric. The better cross-dataset performance also

validates the better generalization ability of our schemes.

7.1.2 Multi-Modal Crowd Estimation

In the multi-modal domain, we design a novel audio-visual crowd counting model that focuses

on the effective utilization of both visual and audio inputs for better modalities association and

productive feature extraction. In the same work, we also introduce the notion of auxiliary PIR

and PCE information, and empirically show that it is beneficial for effective modalities association

and extracting rich visual features without requiring any extra ground-truth annotation process.

We have also deployed a unique multi-branch structure to extract rich visual features and also

proposed the image-only variant of our model. Experimental evaluation on standard benchmarks

reveals the superior performance of our networks under all standard evaluation settings with up to

33.8% improvement.

7.2 Future Work

In the future, we aim to work on the following problems:

• Investigate the multi-scale crowd counting models in other computer vision tasks (segmen-

tation, pose estimation etc.).
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• Inspect the PRM-less CC-FIP network (Chapter 3) with the attention mechanism.

• Design the Multi-Modal (AudioVisual) Crowd counting using the Image+Audio input with

special focus on improving the intra- and inter-modality fusion process.

Although we have explored the audio-visual space quite comprehensively, however, we still

believe that extracting the valuable and strong coherent features from both (audio and visual)

modalities for improved effectiveness can be further explored. Only a few countable works have

been done to date in this domain. Therefore, we aim to design a more effective multi-modal (au-

diovisual) crowd counting model that gives better performance amid addressing the above crowd

counting challenges.
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