
8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Lesson #8

Structures
Linked Lists

Command Line Arguments

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Introduction to Structures
Suppose we want to represent an

atomic element. It contains multiple
features that are of different types. So
a single variable or even an array are
inadequate to represent it. The solution
is a structure that allows us to
aggregate variables of different types
under one logical name.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Creating a new type
By creating a structure, we create a new

type of data. We know about int, double and
char, let's create a new type called struct
element.

struct element
{
 char name [10];
 char symbol [5];
 double atom_weight;
 int atom_number;
}

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Creating a new type
The declaration of new types usually

happens before the main program, just after
the preprocessor directives so that the new
types are known in all the functions of the
program.

Inside a function though, it is necessary, as
for the other usual types to declare
variables.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Declaring variables
int a, b[3];
struct element e1, e2, e3, e[50];
are all valid declarations

 To fill the values into the components, we use the .
(dot) operator. Components (dotted variables) behave
exactly like regular variables.

strcpy (e1.name, "hydrogen");
strcpy (e1.symbol, "H");
e1.atom_number = 1;
e1.atom_weight = 1.00794;

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

The typedef Construct
 The typedef construct provides the possibility to

define synonyms to built-in or user-defined data types.

 For instance, by having typedef int age; defined
after the preprocessor directives, I create a new
type age that is exactly like an integer. So I will be
able to declare a variable age x; where x will be in
reality an integer. I could also use typedef struct
element ele; and for now on, we would be able to
declare variables with ele only: ele e5;

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

typedef + struct
Quite often we combine the structure

definition with the user-defined data type
alias associated with it.

typedef struct element
{
 char name [10];
 char symbol [5];
 double atom_weight;
 int atom_number;
}ele;

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Placing values in structured variables

1. We can declare and initialize and the same
time:

ele e6 = {"hydrogen", "H", 1.00794, 1};
The order must reflect the structure definition.

2. We can fill the variables by assignment (see
three slides back).

3. We can ask the user or read from a file.Ex:

scanf ("%lf", &e2.atom_weight);
fscanf (in, "%s", e2.symbol);
gets (e2.name);
fgets (e3.name, sizeof(e3.name), in);

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures and functions
When a structured variable is passed as an

input to a function, all of its component
values are copied into the components of
the function's corresponding formal
parameters.

Unlike arrays that require pointers to be
passed to functions, structures can be
passed by value. Of course you can use
pointers also if you need multiple results,
like we have seen before.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures and functions
 Let's have a function that prints out a report on the

element.

void
print_element (ele e)
{
 printf ("Name: %s\n", e.name);
 printf ("Symbol: %s\n", e.symbol);
 printf ("Weight: %.1lf\n", e.atom_weight);
 printf ("Atomic Number: %d\n", e.atom_number);
}

 In the main it would be called like
print_element (e1);

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures and functions
 Let's have a function that compares two elements

by comparing the two atomic numbers. It returns
true if they are identical.

int
compare_elements (ele e1, ele e2)
{
 int equal;
 equal = e1.atom_number == e2.atom_number;
 return (equal);
}

 In the main it would be called like
compare_elements (e1, e[4]);

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures and functions
 Let's have a function that fills a structure from the

keyboard and then returns it back to the main.

ele
read_element (void)
{
 ele e;
 printf ("Enter the name, symbol, atomic

 weight and atomic number separated by
 spaces: ");

 scanf ("%s%s%lf%d",e.name, e.symbol,
 &e.atom_weight, &e.atom_number);

 return (e);
}

 In the main it would be called like
e1 = read_element();

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures, functions, and pointers
 Let's have a function that does exactly the same thing

as the previous one except that it will read two
elements and use a pointer parameter for the extra
"fake result."

 ele read_element (ele* eptr)

 Before going further we need to understand the order
of pointer operations. If a pointer variable of type ele is
called eptr then to fill its atomic number component,
for example, we would be tempted to use scanf (“%d”,
&*eptr.atom_number); (notice that eptr is a pointer, the
element itself is *eptr). That would be a mistake,
however, as we will see on the next slide.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures, functions, and pointers
 The scanf statement on the previous slide is not

correct because the dot (.) operator is always
processed before the star (*) operator. That would
result in accessing the atomic number of a pointer
(eptr.atom_number) instead of the atomic number
of an element.

 Therefore we need to use
scanf ("%d", &(*eptr).atom_number); instead.
There is a short cut in C for (*eptr)., it is eptr->,
therefore, we can use
scanf ("%d", &eptr->atom_number); as an
alternative.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Structures and functions
 Now let's see the function:
ele
read_element2 (ele* eptr)
{
 ele e;
 printf ("Enter the name, symbol, atomic

weight and number separated by spaces: ");
 scanf ("%s%s%lf%d",e.name, e.symbol,

 &e.atom_weight, &e.atom_number);

 printf ("Enter the name, symbol, atomic
weight and number separated by spaces: ");

 scanf ("%s%s%lf%d",eptr->name, eptr->symbol,
 &eptr->atom_weight, &eptr->atom_number);

 return (e);
}

 In the main it would be called like
e1 = read_element2(&e2);

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Linked Lists
 A list is a finite sequence, with order taken

into account.

 A linked list consists of ordered nodes like
N1, N2, N3,...Nn together with the address of
the first node N1.

 Each node has several fields, one of which
is an address field.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Linked Lists
 The address field of N1 contains the address of N2,

the address field of N2, the address of N3, and so
on.... The address field of Nn is a NULL address. In
the following example, the variable start contains the
address of the first node. Each node has two fields,
the first contains an integer indicating the position of
the node in the list, the second field contains the
address of the next node.

 1 2 3

start

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Example of a linked list
 To declare a linked list, we need to declare a structure

where the last component will be a pointer to a
variable of the structured type itself.

 Let's define a list of elephants. Notice that the next
component is a pointer to a struct ELEPHANT. The
other component store the animal's name and weight.

typedef struct ELEPHANT
{
 char name [10];

 int weight;
 struct ELEPHANT* next;
}elephant;

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Example of a linked list
 Next, let's declare variables to store our list nodes

and the start of the list.

/* the nodes - ready to contain 3
elephant names */

elephant eleph1, eleph2, eleph3;

/* the start variable - pointer to an
elephant node */

elephant* start;

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Example of a linked list
 Let's fill now the elephants' names and weight:
strcpy (eleph1.name, "Edna");
strcpy (eleph2.name, "Elmer");
strcpy (eleph3.name, "Eloise");
eleph1.weight = 4500;
eleph2.weight = 6000;
eleph3.weight = 4750;

"Edna"

start

eleph1

4500 "Elmer"

eleph2

6000 "Eloise"

eleph3

4500

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Example of a linked list
 Next, let's link all these elephants together and

build the linked list.
start = &eleph1;
eleph1.next = &eleph2;
eleph2.next = &eleph3;
eleph3.next = NULL;

"Edna"

start

eleph1

4500 "Elmer"

eleph2

6000 "Eloise"

eleph3

4500

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Example of a linked list
 Finally, let's use our linked list. We will print out the

names of all the elephants in it. We will use a a
variable p (elephant* p;) as a travelling variable
through the list (not unlike the i variable we used to
travel though an array).

count = 1; /* to count the elephants */

/* the list loop */
for (p = start; p != NULL; p = p->next)
{
 printf ("Elephant #%d is %s.\n",

count, p->name);
 count = count + 1;
}

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Linked Lists and functions
 Linked lists can of course be sent to functions. Let's have a

function that accepts a list of elephants and returns 1 if an
elephant weighing more than 5000kg can be found in the
list.

int
find5000 (elephant* ptr)
{
 int found = 0;
 for (p = start; p != NULL; p = p->next)
 if (ptr->weight > 5000)
 found = 1;

 return (found);
}
find5000 (start); would return 1 .

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Lists and dynamic allocation
 So far we knew in advance the number of

elephants in the list. But what if we didn't? Let's
now have a function named get_elephants that
will fill the list from user input. Since we do not
know how many elephants the user will enter,
we will use dynamic allocation for every node.

 In the main program, in that case, only the start
variable will be declared and all the nodes will
be dynamically allocated and filled with values
in the function. The function will be called this
way:

 start = get_elephants ();

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Lists and dynamic allocation
elephant*
get_elephants (void)
{
 elephant *current, *first;
 int response;
 /* create first node */
 first = (elephant*)calloc(1,sizeof(elephant));

current = first;
 printf("Elephant name? ");
 scanf ("%s", current->name);

printf("Elephant weight? ");
 scanf ("%d", ¤t->weight);

 printf("\nAdd another? (y=1/n=0)");
 scanf ("%d", &response)

cont...

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Lists and dynamic allocation
while (response) /*while response is 1 (yes) */
{
 /* allocate node and change current pointer */
 current->next = (elephant *)calloc

(1,sizeof(elephant));
 current = current->next;

 /* fill node */
 printf("Elephant name? ");
 scanf ("%s", current->name);
 printf("Elephant weight? ");
 scanf ("%d", ¤t->weight);

 printf("\nAdd another? (y=1/n=0)");
 scanf ("%d", &response);
}

cont...

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Lists and dynamic allocation
 current->next = NULL;
 return (first);
}

Now can you think how to:

Add a node at the end of a linked list?

Add a node at the beginning?

 Insert a node between two nodes?

Delete a node?

"Edna"

start

eleph1

4500 "Elmer"

eleph2

6000 "Eloise"

eleph3

4500

See ihypress.net/programming/c/10.php for more examples.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

int main (void)?
 All proper C main programs begin with int main (void).

A main program is actually a function that takes
arguments from the operating system and returns an
integer (0).

 So far, we did not use any arguments in the main
program because we did not send anything to the
program from the operating system. That is why we
used void as the sole argument for the main function.

 If we want to send information from the operating
system to the program, we need to have command-
line arguments.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Command-line arguments
The main program can have two command-

line arguments:

1. argc: an integer, representing the number
of arguments (always at least 1).

2. argv: an array of strings containing the
arguments themselves. All arguments
coming from the operating system are
strings.

 So instead of int main (void), the program
header becomes
int main (int argc, char* argv[])

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Using command-line arguments
#include <stdio.h>
int
main (int argc, char* argv[])
{

int i;

/* argument 0 identifies the program */
 printf ("%s\n",argv[0]);

/* the other arguments */
for (i = 1; i < argc; ++i)
printf("%s ", argv[i]);

 return (0);
}

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

The Command Line
 Now that we have seen how command-line

arguments are processed by C programs,
let's see now how to send the command
lines.

 Command lines are not written in C, they
are direct text commands to the operating
system.

 To access the OS commands in Windows
XP or Vista, we use Start > Run > cmd

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

The Command Line
 Better still, we can use the command mode

directly from Quincy.
Tools > Options > Run > Prompt each time...

 Then, when we run the program, we will be
prompted for the command line.

 Let's run the program from two slides back.

argv[0]
argv[1] to argv[5]

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Numerical arguments / atoi()
 What if we needed to send numerical values into

the command line?

 Since command line arguments are strings, we
will need to convert those strings to numbers. For
that we will need two new functions (need to
include stdlib.h).

 The atoi() function converts a string into an
integer, and returns that integer. The string must
of course some sort of number, and atoi() will stop
reading from the string as soon as a non-
numerical character has been read (+ and – are
considered numerical at the beginning of the
string).

 atoi("45.78"); will return the integer 45.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

Numerical arguments / atof()
The function atof() converts a string into a double,
then returns that value. The string must start with a
valid number, but can be terminated with any non-
numerical character, other than E or e (+ and – are
considered numerical at the beginning of the string).

 atof("42.57"); will return the double 42.57.

 atof("45.3e3"); will return the double 45300.0.

 See ihypress.net/programming/c/12.php for more
examples.

8. Structures, Linked Lists and Command Line Arguments - Copyright © Denis Hamelin - Ryerson University

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

