
4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Lesson #4

Logical Operators and
Selection Statements

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Control Structures

 Control structures combine individual
instructions into a single logical unit with
one entry point at the top and one exit point
at the bottom.

 3 kinds of control structures:
 Sequence (default control structure)
 Selection (branches)
 Repetition (loops)

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Conditions
 A condition is an expression that is either

true or false.
 Ex: temperature=28;

 temperature < 0 will be false
 temperature >20 will be true

 Comparison (relational) operators are:
 < > <= >= == !=

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Logical Operators
 A logical expression contains one or more

comparison and/or logical operators.
 The logical operators are:

 &&: the and operator, true only when all
operands are true.

 ||: the or operator, false only when all operands
are false.

 !: the not operator, false when the operand is
true, true when the operand is false.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Updated Operator Precedence Rule
2.1 Function calls
2.2 Unary operators (-, +, !, (int), (double))
2.3 *, /, %
2.4 +, -
2.5 <, <=, >=, >
2.6 ==, !=
2.7 &&
2.8 ||
2.9 = (assignment operator)

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Fast Evaluation of Logical
Expressions

int x=3, y=4, z=10, w;

w = x == 3 || y < 10; is w true or false?

w = x%3-z<x&&z>=x/y || x<y;

 The trick is to divide the expression in sub-
expressions between the || and evaluate the
easiest first. As soon as you find a true sub-
expression, the whole expression is true.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Fast Evaluation of Logical
Expressions

 When there is no || operator. Divide the
expression in parts between the && operators. If
one part is false, the expression is false.

 int a=1, b=2, c=3;

 Is this expression true or false?

a < 5 - 3 && b == 5 - c && b > 4

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Building Logical Expressions
 Are x and y both greater than 10?

 x > 10 && y > 10

 Is either x equal to 1 or 3?
 x == 1 || x == 3

 Is x between y and z?
 x >= y && x <= z (never y <= x <= z)

 for example if a=7; 3 <= a <= 5 is true!!

 Is x an even number?
 x % 2 == 0

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Comparing Characters
 '9' >= '0' ?
 'a' < 'e' ?
 'B' <= 'A' ?
 'Z' == 'z' ?
 Is a letter lowercase?

 letter >= 'a' && letter <= 'z'

 Does the variable ch contain a letter?
 (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z')

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Logical Assignment
 Logical values can be assigned to variables.

Logical variables are int in C.

int age, senior;
scanf ("%d", &age);
senior = age >= 65;
 senior will contain 1 if true and 0 if false.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Integer and Logical Values

 In C, logical values (true or false) are
represented by integer constant and
variables.

 False is always 0.
 True is all the non-zero values.
 1 always means true of course, but 2, 4.5,

and –10000 are also values interpreted as
true.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Condition Complements
 The opposite (or complement) of (x == 0)

is !(x==0) or (x != 0).
 The opposite of (x > 3) is !(x > 3) or (x <=3).
 The opposite of (a == 10 && b > 5) is !(a ==

10 && b > 5) or (a != 10 || b <=5)

De Morgan's Theorem:
The complement of exp1&&exp2 is
comp_exp1||comp_exp2.

The complement of exp1||exp2 is
comp_exp1&&comp_exp2.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

The if Statement

Syntax of a simple if statement:

if (condition) statement if condition is true;else statement if condition is false;
Note: Never put a ; after the condition.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

A Simple if Statement
int temp;
printf ("What is the temperature?");
scanf ("%d", &temp);
if (temp >= 20) printf ("The temperature is warm.\n");else printf ("The temperature is cool.\n");

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

if Statement with Only One
Alternative

int temp;
printf ("What is the temperature?");
scanf ("%d", &temp);
if (temp >= 100) printf ("WARNING! Boiling water\n");

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

if with Compound Statements
 if statements expect only one statement per

branch (true/false). To have more, we use
compound statements (enclosed in { }).

int temp;
printf ("What is the temperature?");
scanf ("%d", &temp);
if (temp >= 100)
{ printf ("WARNING! Boiling water.\n"); printf ("Turn off the heat!\n");}

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Nested if Statements
 Nested ifs are ifs inside ifs. It is good practice to only

expand the false branch. The true branch is always
terminal. If you need to expand the true branch,
reverse the condition and expand the false branch.

if (temp >= 100)
 printf ("Boiling water!\n");
else
 if (temp <=0)

 printf ("Freezing water!\n");

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

Nested if Statements
 Order is very important with nested ifs:

if (noise <= 50)
 printf ("Quiet\n");else if (noise <= 70) printf ("Intrusive\n"); else if (noise <=90) printf ("Deafening\n"); else printf ("Dangerous\n");

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

The switch Statement
 The switch statement is a useful alternative for

multiple branches (not just true and false).

 It works not with conditions but with control
values.

 The control values must be int or char only, never
double.

 The control values must be discrete, never
ranges.

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

The switch Statement
 Syntax:
switch (control value)
{
 case value1:
 case value2:
 statement(s) if value1 or value2

 matches the control value;
 break;
 case value3:
 statement(s) if value3

 matches the control value;
 break;
 /* other possible values here */
 default:
 statement(s) if no case value

 matches the control value;
}

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

A switch Statement Example
switch (color)
{
 case 'R':
 case 'r':
 printf ("STOP!");
 break;
 case 'Y':
 case 'y':
 printf ("CAUTION!");
 break;
 case 'g':
 case 'G':
 printf ("GO!");
 break;
 default:
 printf ("Invalid color");
}

4. Logical Operators and Selection Statements - Copyright © Denis Hamelin - Ryerson University

End of lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

