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Planning in Continuous Incompletely Known World
Problem: How can a computer with its discrete actions achieve goals
in the continuous world where not all objects or facts are known?

Mixed discrete-continuous systems: instantaneous transitions
between states due to discrete actions and events, and within each
state there is a continuous change. States have relational structure:
go beyond hybrid automata. Think of Data Bases with unknowns.
In general, the planning problem is undecidable already for simple
hybrid automata. Our goal: Develop sound algorithms that can
compute sometimes plans approximating optimization objectives.
Example of Hybrid Relational Systems: How to integrate Task and
Motion Planning (TAMP) in Robotics.

(1) Theorem proving (deductive) approach to lifted planning, where
search is done over situation tree, but not over the state space.

(2) Developed an efficient general planner NEAT that uses a new
non-trivial domain independent heuristic.

(3) Our NEAT planner demonstrates competitive performance on
popular benchmarks from King’s College, London, UK (developed in
Maria Fox and Derek Long’s research group).

Mixed Discrete-Continuous Systems: SC + Timeline
I Each action is instantaneous - situations have unique start time.
I Reiter’s book: start(S0) = 0 and start(do(A,S)) = time(A,T ).
I Planner does search over sequences of actions (situations).
I The state space remains implicit, states are not saved in memory.

Figure: Situations are aligned with moments on a time line: next situation
do(A,S) starts at the moment T when an action A is executed in S.

Example: Bouncing Balls
Consider a finite number of balls that can be dropped and that can elastically
bounce from the floor. Ignore friction.
Agent actions: drop(b, time) and catch(b, time).
Natural events: bounce(b, time) - ball b hits the floor, and atPeak(b, time) -
ball is at the top point of its trajectory.

The atemporal fluent falling(b, s) means the ball b is falling down and
accelerating under the Earth gravity.
The atemporal fluent flying(b, s) means the ball b bounced, it is flying up in
situation s and decelerating due to gravity.
The vertical axis is oriented downwards, i.e., if a ball is falling down, then its
speed is positive and increases. But when the ball bounces, its speed is
negative and decreases.

Consider functional temporal fluent distance(b, t , s) that represents the ball
b’s height at the moment of time t within s, and functional temporal fluent
velocity(b, t , s) that characterizes instantaneous velocity of b at the moment t
within the time interval as long as situation s lasts.

These temporal fluents describe time dependent change within situation, in
between two occurrences of the agent actions and/or the natural events.
This approach extends Reiter’s Basic Action Theories: atemporal fluents only.



SSAs for Atemporal Fluents
Basic Action Theory (BAT) D includes preconditions Dap, successor state
axioms (SSA) Dss, initial axioms DS0 , foundational axioms Σ, unique
name axioms Duna. First, consider SSAs. There are 3 contexts:

1. one where the ball is at rest,
2. one where it is falling down, and
3. one where the ball is flying up after it bounced.

(∀a∀s∀b). falling(b,do(a, s))↔ ∃t(a=drop(b, t)) ∨ ∃t(a=atPeak(b, t))∨
falling(b, s)) ∧ (¬∃t(a=catch(b, t)) ∧ ¬∃t(a=bounce(b, t))

(∀a∀s∀b). flying(b,do(a, s))↔ ∃t(a=bounce(b, t))∨
flying(b, s)) ∧ ¬∃t(a=catch(b, t)) ∧ ¬∃t(a=atPeak(b, t))

In a general case, there are finitely many (parameterized) context types
which are pairwise mutually exclusive.
Important: even if situation does not change, temporal fluents change
with time within situation that can last for an interval of time.
Actions only change the context, thereby switching between the
continuous trajectories that the ball can follow. Each context determines
its own continuous function of time how a physical quantity changes.

Preconditions: Logical and Numeric Constraints
∀t∀s∀b. poss(drop(b, t), s)↔ ball(b) ∧ ¬falling(b, s) ∧ ¬flying(b, s) ∧ t ≥ start(s).

The agent action drop(b, t) is possible in s at the moment of time t , if a ball b
is neither falling, nor flying in s, and the moment of time start(s) when s
started is ≤ t . (Due to ∀t the branching factor is infinite for a planner.)
In an implementation, the temporal constraint t ≥ start(s) is added to a
special data structure for a constraint store to be evaluated later when the
planner checks whether the goal numerical conditions are satisfied.

∀s∀t∀b. poss(catch(b, t), s)↔ ball(b) ∧ (falling(b, s) ∨ flying(b, s)) ∧ t ≥ start(s).

∀s∀t∀b. poss(bounce(b, t), s)↔ ball(b) ∧ falling(b, s)∧
distance(b, t , s)=0 ∧ velocity(b, t , s) ≥ ε ∧ t ≥ start(s).

In an implementation, use external Non-Linear Programming (NLP) solver to
deal with the numerical constraints. An action can be possible only if the
numeric constraints are feasible.

∀s∀t∀b. poss(atPeak(b, t), s)↔ ball(b) ∧ distance(b, t , s) ≥ 0 ∧
velocity(b, t , s)=0 ∧ flying(b, s) ∧ t ≥ start(s).

The last axiom is saying that a natural event atPeak(b, t) can occur in s at the
moment of time t if the ball b is flying up in s so that it reached its highest
point at which its velocity is 0, but its hight is positive.

SSAs to Initialize Temporal Fluents
When actions occur, the temporal change can be either continuous, or there
might be jumps or resets in the values of temporal fluents.

To describe transitions in temporal fluents due to actions when new situation
starts, use auxiliary functional fluents initdist (b,d , s) and initvel (b, v , s).

Fluent initdist
The height of the ball changes continuously, no matter what actions happen.

(∀s∀y∀a∀b). initdist (b,do(a, s))=y ↔ distance(time(a), s)=y

Fluent initvel

The velocity y of the ball b resets to 0, when the agent catches the ball.
When the ball bounces, its velocity jumps to the quantity with the opposite
sign. All other actions with any other balls have no effect on these physical
quantities at the moment when new situation starts.

∀s∀y∀a∀b. initvel (b,do(a, s))=y ↔ ∃y0.y0 =velocity(time(a), s)∧
∃t(a=catch(b, t) ∧ y = 0) ∨ ∃t(a=bounce(b, t) ∧ y = −y0)∨

(¬∃t(a=bounce(b, t)) ∧ ¬∃t(a=catch(b, t)) ∧ y =y0).

State Evolution Axioms (SEA): Continuous Change
Each SEA characterizes how temporal fluent changes with time within a
context determined by atemporal fluents. (The gravity acceleration is 9.81)

(∀s∀t∀b). distance(b, t , s)=y ↔ ∃y0.y0 = initdist (b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y = y0)∨(

falling(b, s) ∧ y = y0 −
∫ t

start(s)(9.81 · x) dx
)
∨

(
flying(b, s) ∧ y = y0 +

∫ t
start(s)(9.81 · x) dx

)
.

(∀s∀t∀b).velocity(b, t , s)=y ↔ ∃y0.y0 = initvel (b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y =y0) ∨(

falling(b, s) ∧ y =y0 +
∫ t

start(s) 9.81dx
)
∨

(
flying(b, s) ∧ y =y0 −

∫ t
start(s) 9.81dx

)
.

In an implementation, collect all (underlined) numerical constraints in a data
structure. Postpone evaluation until the planner checks if s is a goal state.

In a simplified implementation we assumed that the balls move along straight
lines instead of physically correct quadratic trajectories. Then, equations for
both height and velocity are linear wrt time.
=> can use the Linear Programming eplex library as an external solver .

If the planning objective is also a linear function of its arguments, then
optimization reduces to solving the Linear Programming (LP) problem.



Foundational Axioms for Situations and Time
All the following axioms have straightforward implementation.
Foundational Axioms from Chapters 4 and 7 of Ray Reiter’s book [2001].
∀a1∀a2∀s1∀s2.do(a1, s1) = do(a2, s2)→ a1 =a2 ∧ s1 =s2
∀s.¬(s < S0)
∀a∀s∀s′.s < do(a, s′)↔ s v s′, where s v s′ means (s < s′ ∨ s =s′)
∀P.(P(S0) ∧ ∀a∀s(P(s)→ P(do(a, s))))→ ∀sP(s)
∀a, s′.do(a, s′) v s → (poss(a, s′) ∧ start(s′) ≤ time(a))∧

∀a′
(
poss(a′, s) ∧ natural(a′) ∧ a 6= a′ → time(a′) ≤ time(a)

)

∀a. start(do(a, s))= time(a) start(S0) = 0
Domain Specific Axioms for the Bouncing Ball Example
∀t ,∀b.time(drop(b, t))= t ∀t ,∀b.time(catch(b, t))= t
∀t ,∀b.time(bounce(b, t))= t ∀t ,∀b.time(atPeak(b, t))= t .
∀t∀b.natural(atPeak(b, t)) ∀t∀b.natural(bounce(b, t)).
∀t∀b.agent(drop(b, t)) ∀t∀b.agent(catch(b, t)).

Initial Theory
ball(b1) ball(b2)
velocity(b1,0,S0) = 0 velocity(b2,0,S0) = 0
distance(b1,0,S0) = 100 distance(b2,0,S0) = 150

In a PROLOG program, functional fluent distance(b, t , s) is implemented as predicate
dist(b, d , t , s), and functional fluent velocity(b, t , s) is implemented as predicate
vel(b, v , t , s). Program is available at https://www.cs.torontomu.ca/mes/publications/

Planning Problem for the Two Balls
Objective: find a plan that satisfies a goal in minimal time wrt constraints.

Find the earliest moment of time such that each ball reached its peak at least
once, both balls are falling, the velocities of the two balls are equal, and their
heights are also equal. Minimization wrt constraints collected so far.

Checking these goal conditions reduces to the linear programming problem
that can be solved using an external eplex LP solver interfaced with our
program. Solved this planning instance with an uninformed iterative
deepening depth-first search (DFS) planner.

The program found a correct 8 step plan in 0.18 seconds: [drop(b2, 0),
bounce(b2, 30.581039755351682), drop(b1, 50.9683995922528), atPeak(b2,
61.162079510703364), catch(b2, 71.35575942915392), bounce(b1,
71.35575942915392), drop(b2, 91.743119266055047), atPeak(b1,
91.743119266055047)].

Notice that this plan must be clever since the two balls had different initial
heights: dist(b1,100,0,[]). dist(b2,150,0,[]).
But in the goal state their heights and velocities must be equal.

In an implementation, precondition axioms for nature’s actions appear before
preconditions for agent’s actions. In a general case, need extra efforts to
make sure nature’s actions are executed as soon as they are possible.

Temporal Change Axiom (TCA) in a General Case
Our starting point is a temporal change axiom (TCA) which describes the
evolution of a particular temporal fluent due to the passage of time in a
particular context of an arbitrary situation: Similar to vel(b, t , s).

γ(x̄ , s) ∧ δ(x̄ , y , t , s)→ f (x̄ , t , s)=y , (1)
where t , s, x̄ , y are variables and γ(x̄ , s), δ(x̄ , y , t , s) are formulas uniform in
s. We call γ(x̄ , s) the context as it specifies the condition under which formula
δ(x̄ , y , t , s) provides (may be implicitly) the value y to fluent f at time t .

γ(x̄ , s)→ ∃y δ(x̄ , y , t , s). (2)
For each TCA, we require that whatever the circumstance, the axiom supplies
a value for the quantity modelled by f if its context is satisfied.
A finite set of k temporal change axioms for fluent f can be equivalently
expressed as follows, where Φ(x̄ , y , t , s) is

∨
1≤i≤k (γi (x̄ , s) ∧ δi (x̄ , y , t , s)).

Φ(x̄ , y , t , s)→ f (x̄ , t , s)=y (3)

Φ(x̄ , y , t , s) ∧ Φ(x̄ , y ′, t , s)→ y =y ′. (4)
Condition (4) guarantees the consistency of the axiom (3) by preventing a
continuous quantity from having more than one value at any moment of time.
With condition (4), all contexts in the given set of TCA are pairwise
mutually exclusive wrt a BAT D. Note contexts γ(x̄ , s) are time-independent.

Deriving State Evolution Axioms
Having combined all laws which govern the evolution of f with time into a
single axiom (3), we can make a causal completeness assumption
(Explanation Closure): there are no other conditions under which the value of
f can change in s from its initial value at start(s) as a function of t , i.e.,

f (x̄ , t , s) 6= f (x̄ , start(s), s)→ ∃y Φ(x̄ , y , t , s). (5)

Theorem
Let for each formula of the form (1) the background theory D entail
∀(γ(x̄ , s)→ ∃y δ(x̄ , y , t , s)). Then the conjunction of axioms (1), (3), (4), (5) is
logically equivalent to

f (x̄ , t , s)=y ↔ [Φ(x̄ , y , t , s) ∨
y = f (x̄ , start(s), s) ∧ ¬Ψ(x̄ , y , t , s)],

(6)

where Ψ(x̄ , s) denotes
∨

1≤i≤k γi (x̄ , s).

We call the formula (6) a state evolution axiom (SEA) for the fluent f . Note
what the SEA says: f evolves with time during s according to some law
whose context is realized in s or stays constant if no context is realized.

See proof in the paper Vitaliy Batusov, Giuseppe De Giacomo, Mikhail
Soutchanski, “Hybrid Temporal Situation Calculus", pages 11-13,
https://arxiv.org/abs/1807.04861



Temporal Basic Action Theory (TBAT): HTSC
The SEA for a temporal fluent f does not completely specify the behaviour of
f because it talks only about change within s. Need a SSA describing how the
initial value of f changes (or does not change) when an action is performed.

How to relate f (x̄ , time(a),do(a, s)) with f (x̄ , time(a), s)? Enforce “=" or not?
Transition is not always continuous, e.g., object’s acceleration changes from 0
to −9.8m/s2 when an object is dropped. Need ability to model action-induced
discontinuous jumps in the values of the continuously varying quantities.

For each temporal functional fluent f (x̄ , t , s), we introduce an auxiliary
atemporal functional fluent finit(x̄ , s) whose value in s represents the value of
the temporal fluent f in s at the time instant start(s). Add new SSA for finit:

finit(x̄ ,do(a, s))=y ↔ ∃y ′.f (x̄ , time(a), s)=y ′ ∧ Init(x̄ , y ′, y ,a, s), (7)

where Init(x̄ , y ′, y ,a, s) is a formula uniform in s whose purpose is to describe
how the initial value y of finit in do(a, s) relates to the temporal fluent f value
y ′ at the same time instant in s (i.e., prior to execution of action a).

To establish the relationship between temporal fluents and their atemporal
init-counterparts, we require Dss ∧ Dse |= f (x̄ , start(s), s)= finit(x̄ , s).

A temporal basic action theory is DT =Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 ∪ Dse such
that Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 constitutes a BAT, and Dse is a set of state
evolution axioms. This is new Hybrid Temporal Situation Calculus (HTSC)

Example 2: a Water Reservoir
inflow —–−→ | water | max volume = tank capacity is C
rate Rin | volume | min volume = 0

| v | —-−→ outflow rate Rout

Consider a water reservoir with an adjustable inflow and an adjustable
outflow. Let the temporal functional fluent vol(t , s) represent the volume of
water in the tank at time t . The maximum capacity of the tank is C. Let Rin
and Rout be inflow and outflow rates (volume per unit time), which are for
simplicity are constant, i.e., rates are time-invariant.

Let actions startIn(t), endIn(t) represent opening/closing of the inflow valve.
These actions initiate/terminate the process represented as the fluent
inflow(s). Let actions startOut(t), endOut(t) represent opening/closing of the
outflow valve. These actions initiate/terminate the process outflow(s).

Poss(startIn(t), s)↔ ¬inflow(s) ∧ t ≥ start(s) ∧ (vol(t , s) < C).
Poss(endIn(t), s)↔ inflow(s) ∧ t ≥ start(s).
Poss(startOut(t), s)↔ ¬outflow(s) ∧ t ≥ start(s) ∧ (vol(t , s) > 0).
Poss(endOut(t), s)↔ outflow(s) ∧ t ≥ start(s).

inflow(do(a, s))↔ ∃t(a = startIn(t)) ∨ inflow(s) ∧ ¬∃t(a = endIn(t))
outflow(do(a, s))↔ ∃t(a = startOut(t)) ∨ outflow(s) ∧ ¬∃t(a = endOut(t))

Reservoir: a State Evolution Axiom (SEA) for Volume
An obvious initial value SSA asserts the continuity of volume (no leaks):

volinit(do(a, s))=v ↔ vol(time(a), s)=v .

To write a State Evolution Axiom for the fluent vol(t , s) consider all possible
combinations of inflow and outflow: either the inflow valve is open while
outflow is present or not, or the inflow valve is closed while the outflow valve
can be open or closed. Each combination is a separate context. For each
context, vol(t , s) evolves according to a different function of flow rates and
time. Inflow cannot exceed capacity C, and outflow cannot yield vol(t , s) < 0.

vol(t , s)=v ↔ ∃v0∃t0
(

volinit(s)=v0 ∧ start(s)= t0 ∧(
inflow(s) ∧ ¬outflow(s) ∧ v =min{v0 + Rin · (t−t0),C} ∨

inflow(s) ∧ outflow(s) ∧ v =max{min{v0 + Rin · (t−t0)− Rout · (t−t0),C}, 0} ∨
¬inflow(s) ∧ outflow(s) ∧ v =max{v0 − Rout · (t−t0),0} ∨
¬inflow(s) ∧ ¬outflow(s) ∧ v =v0

) )
.

The expression ¬inflow(s)∧¬outflow(s) on the last line of the SEA is logically
equivalent to the negated disjunction of the three contexts on preceding lines.
Notice that in this axiom there are four different pairwise exclusive contexts,
and for each context there is its own function describing how the fluent
evolves with time.

PDDL 2.1 (2003) and PDDL+ (2006)
PDDL= the Planning Domain Definition Language: to standardize input

Maria Fox and Derek Long, “PDDL 2.1: An Extension to PDDL for
Expressing Temporal Planning Domains" 2003, JAIR, v.20, p.61–124
PDDL+: Maria Fox and Derek Long, “Modelling Mixed Discrete
Continuous Domains for Planning", JAIR, 2006, vol 27, p.235–297.
(Semantics: hybrid automata; fluents and actions are instantiated.)

I PDDL 2.1 and PDDL+ are languages developed to describe
temporal planning problems in a domain agnostic way.

I Consists of the following constructs:
I Objects e.g. (gen1 - solarGenerator)
I (Agent) Actions e.g. enableGenerator, disableGenerator
I Durative Actions e.g. rampUp, rampDown, generatePower
I Predicates e.g. IsGenerating, IsEnabled
I Functions e.g. PowerGenerated, RunningCost
I (Natural) Events e.g. powerFailure, overheat
I Processes e.g. running

Vitaliy Batusov and Mikhail Soutchanski, “A Logical Semantics for
PDDL+", ICAPS, 2019, pages 40-48. (It is based on the HTSC.)



PDDL+ Planners
Planner Discretize Heuristic Heur. Type Non-Linear?
CASP(2016) Yes No - Yes
COLIN(2012) No Yes Independent No*
DiNo(2016) Yes Yes Independent Yes
ENHSP(2017) Yes Yes Independent Yes
OPTIC++(2019) No Yes Independent Yes**
SMTPlan+(2016) No No - Yes***
UPMurphi(2010) Yes No - Yes
TM-LPSAT(2005) No No - No

* COLIN can only solve PDDL 2.1 problems (no contin. processes)
** OPTIC++ can only handle linear equations in preconditions
*** SMTPlan+ can only handle polynomial change

Daniel Bryce, Sicun Gao et al, “SMT-Based Nonlinear PDDL+ Planning", 29th
AAAI, 2015, p.3247-53. Reduce PDDL+ planning to reachability problems of
hybrid automata, which are encoded and solved as FOL formulas over the
reals. Use the δ-complete decision procedure over the reals (dReal solver).

M.Balduccini et al “CASP solutions for planning in hybrid domains", Theory
and Practice of Logic Programming, 2017, Vol 17, N4, p.591-633 (ASP)

Compare with the best state-of-the-art planners: DiNO, ENHSP, SMTPlan+.

Experimental Evaluation
We evaluated our planner, NEAT and the existing state-of-the-art
non-linear temporal numeric planners for which source code is readily
available: DiNo , ENHSP (2020 version) and SMTPlan+.

Both DiNo and ENHSP are model-based planners that discretize time
and reduce the temporal numeric planning problem to a numeric planning
problem (without time). Both use different heuristics.

SMTPlan+ reduces the temporal numeric planning problem to a
Satisfiability Modulo Theories (SMT) problem (Z3 solver), and it does not
discretize time.

There are a few other PDDL+ planners such as dReach, CASP,
UPMurphi, OPTIC+, ScottyActivity, but either they were previously
discussed and compared, or their source code was not available.

Each planner is given 30min per instance and 1 GB of memory.

Metrics for comparison:
(1) execution time (in seconds): how long the planner takes to find a plan,
(2) coverage: how many instances were successfully solved
(3) plan duration (in time units) which is a measure of plan optimality

Our NEAT (Non-linEAr Temporal) Planner
All PDDL+ planners are based on grounding. They instantiate all actions
schemas with constants from the planning problem instance. Most build a
grounded transition system before search starts.

Our NEAT (Non-linEAr Temporal) Planner is a lifted forward search planner. It
works directly with action schemas, i.e., no grounding in advance.

No discretization of time. The moments of physical time when actions are
executed remain symbolic until the planner computes a schedule for the
actions in a plan. Sometimes, non-linear change can be handled too.
Calls an external numerical solver for non-linear programming problems.

The NEAT planner does lifted greedy best-first search (GBFS). Heuristic
search is guided by a domain-independent heuristic (from optimal control).

The closely related zero-crossing (the continuous Skolem) problem is
decidable for a function defined by a linear differential equation, if the order of
the equation is up to 8 (OK for some realistic cases), conditional on
Schanuel’s Conjecture [V.Chonev, J.Ouaknine, J.Worrell, J. of ACM, 2023]

Input: automatically translated from PDDL+ benchmarks, and then manually
edited to produce a temporal BAT in the HTSC (can be fully automated).
Output: a time-stamped sequence of agent acts; may include natural actions.

PDDL+ benchmarks are available: https://github.com/KCL-Planning/DiNo
Descriptions: http://kcl-planning.github.io/DiNo/benchmarks
http://kcl-planning.github.io/SMTPlan/benchmarks

Methodology: Planning in Logic + External NLP Solver
I Heuristic search over the situation tree (state space is implicit)
I Numerical constraints are not handled by our planner directly.

Collect all the numerical constraints encountered in a data
structure. Pass them + Objective to an external non-linear
programming (NLP) solver.

I Use state-of-the-art NLP solvers KNITRO (Artelys) and IPOPT.
I Our domain-independent heuristic finds the most promising

action by relaxing and approximating the continuous processes.
To evaluate an action, the heuristic has two stages.

I (a) Let action manifest its effects ("beneficial" or "harmful")
through the processes initiated/terminated by the action.
(b) Imagine a convex combination of all processes runs until
numerical goal conditions are satisfied. Determine how much
time it takes. This is a relaxation of what can happen in reality.

Limitations of our current implementation:
I translation from PDDL+ to HTSC is manual
I #t is not implemented: we encode a solution to ODE manually in the

state evolution axioms.
I overall global constraints are verified after a plan has been computed.



Constraints Manager (by Nikola Kadovic)
ConstraintsManager (abbreviated CM) is a library providing a software
interface between a planner and an external non-linear numerical solver. It
allows the user to encode and solve non-linear programming (NLP) problems:

min f (x̄) over x̄ ∈ Rn such that
ḡL ≤ g(x̄) ≤ ḡU

x̄L ≤ x̄ ≤ x̄U ,
f (x̄) : Rn 7→ R is an objective function, g(x̄) : Rn 7→ Rm is constrained to be
between the vectors ḡL and ḡU , and x̄ must be between the vectors x̄L, x̄U .

Constraints make up ḡ. When we "add" constraints, we build upon a previous
list of generated constraints, i.e., increasing the vector output of g. The set of
constraints is feasible, if there is at least one point x̄ ∈ Rn that satisfies all
constraints.
CM communicates with external solvers through an intermediate software
package called AMPL ("A Mathematical Programming Language”). CM
produces a string that is passed to AMPL that does pre-processing and then
sends its output to a specified NLP solver.

All included results are preliminary: from a November 2024 version of the
planner. They are subject to change.

Car domain
Drive a car from a standstill for a certain specified distance and arrive
with 0 velocity as quickly as possible within the constraints.
I Actions: accelerate(time), decelerate(time), stop(time)

I Natural Actions: movingBegin(time), movingEnd(time),
engineExplode(t), windResistBegin(t), windResistEnd(t)

I Numerical Fluent: acceleration(x , s) subject to an upper and
lower bounds: its value x determines a context.

I Fluents: engineBlown(s), stopped(s), running(s)

I Temporal Fluents: velocity(time, s),distance(time, s)

In all planning instances, the goal is to travel as soon as possible at
least 30 units distance and stop with 0 velocity within 50 units of time
allotted to the car. Wind resistance happens at velocity 50. Engine
explodes at velocity 100.

In the different planning instances, there are different upper and down
limits on acceleration, and deceleration. For example, in the instance
7, the limits are +7 and -7, accordingly, but in the instance 25 the
limits are +25 and -25. Everything else is the same.

Linear Car (no wind): Execution Time

All planners solved all 50 instances: SMTPlan takes less than
0.07sec, ENHSP takes around 0.3sec on all instances. NEAT time
varies from 1 to 10sec (CM with Knitro), and from about 3 to 7sec for
CM with IPopt. The computed plans are non-optimal: 2 accelerate
actions followed by 2 decelerate actions.

Nonlinear Car (with Wind): Execution Time

SMTPlan could not solve any instances, since it works only with
polynomial functions of time; in this problem velocity changes log().
Other planners solved all 50 instances. ENHSP takes about 0.3sec.
NEAT: CM with Knitro time varies from about 1 to 10sec, CM with
IPopt time varies from 3sec to about 10sec. Execution time of DiNo
varies wildly as shown.



Solar Rover domain
A rover needs to charge its internal batteries in order to transmit
some data
I Actions: switchGenBatteryOn(genBattery , t),

useBatteryBegin(b, t), useBatteryEnd(b, t), sendData(t) –
needs 500 units of energy

I Natural Actions: sunshine(t) - provides 400 units
I Static Fact: sunexposure(sunriseTime), powerlimit(1000)

I Temporal Fluents: roverEnergy(s)

I Fluents: on(battery , s), off (battery , s), gbon(genBattery , s),
gboff (genBattery , s), roverSafe(s), dataSent(s), night(s),
usingBattery(b, s)

I Temporal Fluents: SoC(battery)

SoC= “state of charge" (for a battery). Initially, rover has 0 energy,
there are 3 batteries with SoC 40, 80, 100, and a general battery with
SoC=100. Time when sunshine event happens varies across the
instances, e.g., in the 1st it is at 50, in the 40th instance it is at 2000,
etc. Goal: get enough power to send data as soon as possible.

Non-linear Solar Rover

Identical to the linear version, but now there is a charging process
that can begin or end. Its purpose is to increase the value of the
roverEnergy temporal fluent by some non-linear function. Below, we
list only the new additions to the domain.
I Actions: chargingBegin(Time), chargingEnd(Time)

I Process: charging
I Temporal Fluents: roverEnergy(time, s)

Non-Linear Solar Rover: Execution Time

ENHSP and SMTPlan could not compute any plans.
DiNo: time increased linearly from about 11sec to 190sec.
NEAT: CM with IPopt time varied a lot from 16sec to about 97sec. CM
with Knitro did not work. AMPLEX with Knitro: time varies between 4
and 11 sec. AMPLEX is described in S.Mathew, M.Soutchanski “Heuristic
Planning for Hybrid Dynamical Systems with Constraint Logic Programming",
Italian Wsh on Planning, IPS-2023, https://ceur-ws.org/Vol-3585/

1D Powered Descent
How to land softly on the surface of a planet? The spacecraft falls down and
gains velocity due to the force of gravity. It can begin thrusting process by
firing its engines against gravity to decrease velocity. The duration of thrust
process is flexible.The change of distance due to thrust is calculated as
−Isp ·G · (t−t0)− Isp ·G · (1/q) · (m(t0)− q · (t−t0))·

log
(
(m(t0)− q · (t−t0))/m(t0)

)

where Isp is the specific impulse of the thruster, q is a constant, G is the
acceleration due to gravity, m(t0) is the initial mass of the spacecraft before
firing thrusters, t0 - time when thrust (fall) begins, t - current time.
I Actions: fallBegin(t), fallEnd(t) thrustBegin(t), thrustEnd(t), land(t).
I Natural Action: crash(t)
I Temporal Fluents: mass, velocity, distance
I Fluents: crashed(s), inProgress(s), landed(s)

land is possible if the final velocity and distance from the surface are within
the safe bounds, otherwise crash happens.
For a falling body, distance changes according to Newton’s equation
d(t0) + v(t0) · (t−t0) + 0.5 ·G · (t−t0)2.
Velocity of a falling body with active thrust changes as
v(t0) + G · (t−t0)− Isp ·G · log

(
(m(t0)− q · (t−t0))/m(t0)

)

In the instances, only the values of final distance vary from 100 to 2000.



1D-Powered Descent: Execution Time

ENHSP and SMTPlan could not compute any plans.
DiNo solved only 19 instances: time varies between 12 and 99sec,
but Instance 19 takes about 1770 sec.
NEAT: CM with Knitro solved 33 instances: from 0.3sec to 250sec,
the last instance 32 takes 1500 sec. CM with Ipopt solved 35: time
varies between 0.9 and 2.2 sec. AMPLEX with Knitro solved 30
instances (could not solve instances 16-18,32): time was around 0.4s

Conclusion and Future Work
Our NEAT planner demonstrates performance that is comparable with
the state-of-the-art planners DiNo, SMTPlan+, ENHSP across several
realistic benchmarks for hybrid systems.

Future Work.
I Consider a broader class of hybrid systems where actions can

change logical fluents only, but have no effect on processes.
I Optimize iteratively constructed NLP: consecutive NLP problems

are closely related
I More informative heuristic for domain-independent planning in

hybrid systems
I Prove that under certain conditions our planner is sound.
I Find when NEAT planner can work correctly with natural actions
I Experimental evaluation on the realistic domains where the

objects can be created/destroyed at run time.
I Explore if NEAT can be useful to solve practical optimization

problems for hybrid systems.

A Few Topics for Future Research: Part 1
In the HTSC, the mutually exclusive contexts include only truth-valued
(parameterized) fluents. But it would be interesting to consider an extension
of the HTSC where the contexts may include numerical fluents as well. This
would require significant revision of the State Evolution Axioms.

Integration of Task and Motion Planning (TAMP) is a large and practically
important research area with focus on probabilistic algorithms. However,
there is a lack of conceptual understanding of TAMP. The question is how the
TAMP problems can be formulated within the HTSC in a general form. The
following papers are good starting points.
Erion Plaku, Gregory D. Hager: “Sampling-Based Motion and Symbolic
Action Planning with Geometric and Differential Constraints". ICRA 2010:
pages 5002-5008.
Marc Toussaint: “Logic-Geometric Programming: An Optimization-Based
Approach to Combined Task and Motion Planning". IJCAI 2015:
p.1930-1936.

A few Topics for Future Research: Part 2
The most popular approach to solving planning and control problems in the
hybrid systems is Mixed Integer Non-Linear Programming (MI-NLP). There is
a large library MINLPlib that accumulates the realistic benchmarks solved
using traditional techniques from Operation Research. See details at
http://minlplib.org/applications.html
https://www.minlp.org/index.php

It would be interesting to demonstrate that some of those planning
benchmarks can be formulated in the HTSC. This research may encounter
new features and extensions that have to be added to HTSC. Caution: not all
benchmarks in MINLPlib are planning related, and among those that are
related, not all of them model a hybrid system.

The important research question is whether the flexibility and generality of
modelling mixed discrete-continuous domains in HTSC can also provide the
benefits in terms of solving the related optimization problems more efficiently.
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Appendix: Why theorem proving approach to plan?
Our deductive approach to planning is formulated in the Situation
Calculus (SC) where the initial theory DS0 is a finite set of fluent
literals and a goal can be a ∃-quantifed conjunction of fluents.

This allows for representation of a broad class of planning problems.
I Can plan without the Domain Closure Assumption (DCA) that

restricts to finitely many C1, . . . ,Cn s.t. ∀x(x =C1 ∨ · · · ∨ x =Cn).
Objects can be initially unknown, or created/destroyed while
planning. Need an infinite model over constants naming objects.

I Can plan without the Closed World Assumption (CWA), i.e.,
knowledge can be incomplete, e.g. numeric conformant plan.

I Can plan when actions have parameters that vary over infinite
domains, since search for a plan is done over the situation tree:
situations serve as concise symbolic proxies for infinite models.

I Can do lifted planning using action schemas: instantiate actions
at search time without building explicit state space in advance.

In our current implementation, we make simplifying assumptions to
guarantee that our planner is efficient.


