
Automated Planning Around Processes

Derek Long
Schlumberger Cambridge Research, UK

King’s College London, UK

Mikhail Soutchanski
Toronto Metropolitan University, Canada

What is it and why do we care?

• Many of our interactions with the world involve us performing actions that initiate, terminate,
control or simply avoid continuous processes

• Processes can represent flows: heat, energy, liquids, gases, traffic, money, information

• Reactions, motion, growth and contraction

Planning and Control

• Planners are designed to tackle “long horizon” discrete control problems – “long” means multi-action

• Mixed discrete-continuous planning problems are hard hybrid control problems at wide ranging
granularities

• Planners are traditionally aimed at achieving target end states – the planning “control” problem is
about moving efficiently towards a good end state

• Control systems are usually concerned with trajectories – they are designed to keep the behaviour
close to a nominal trajectory

Mixed Dynamics

• Control involves making several distinct types of decision:

– Action choices (open this valve or that valve? Use this cutting tool or switch to a different tool?
Etc)

• Discrete choices leading to mode changes

• Often at longer horizon

– Timing choices (this first or that? Perform this at time t? Etc)

• Discrete or continuous?

• Depends on temporal model

– Parameter choices (flow rates, power levels, distance to move, angle to turn etc)

• Generally continuous parameter spaces and choice governed by mathematical functions

• Often at short horizon

Mixed Discrete-Continuous Systems

• Optimising purely continuous functions is a mathematical problem

– Linear functions well understood and tractable

– Non-linear functions manageable under certain conditions

• Common strategy is to linearise over sufficiently short horizons and use LP

• Discrete control choices introduce combinatorial complexity

– Control of discrete systems involves search

– Mixed discrete-continuous optimisation is NP-hard with linear functions (eg adding integer
constraints to some variables)

• Mixed Integer Linear Programming (MILP) is a well-developed area of optimisation and AI, borrowing
from Operations Research, Mathematics, Constraint Programming and AI Search

AI Planning

• Given:

– A domain model (action templates – specify preconditions and effects)

– An initial state (specifies the objects, their current conditions/states and the goal condition)

• Classically: precondition is a logical sentence over state variables; effect is a partial assignment to
state variables – unassigned variables assumed unchanged (STRIPS assumption)

• A plan is a sequence of instantiation actions that applies from the initial state to generate a state
satisfying the goal

• Time is implicit only in the ordering of actions!

Action

Precondition

Effect

Temporal Planning

Durative Action

At start conditions

At start effects

At end conditions

At end effects

Over all conditions

Duration

Temporal planning with Boolean state variables is only interestingly different if actions may execute concurrently

Numeric state variables are hard, but the temporal dimension changes when time and numbers interact:
• Variable durations that also change effects
• Continuous change

PDDL2. 1: An extension to PDDL for expressing temporal planning domains, M Fox, D Long, Journal of artificial intelligence research 20, 61-124 (2003)

The key ingredients

Plan

Planner

Capturing Continuous Change

• Black-box: a process is running, but we only see the effect

• Exposed: a process is within the durative action – we see its effect continuously

𝑑𝑥

𝑑𝑡
= 𝑚

Durative Action

At start conditions

At start effects

At end conditions

At end effects:
Increase x (* m d)

Duration, d
Induces a step change in
variable x
If duration is variable, then
effect is variable

Modelling Continuous Effects in PDDL2.1

• The effect is not associated with start or end (it happens continuously!)

• We write:

(increase x (* m #t)) Note could instead be a decrease effect

• Why not “dx/dt = m”?

– Concurrent effects combine continuous contributions to change in x, so single action cannot
specify the value of dx/dt, only its contribution to it

What happens in PDDL+?

• Executive agents perform instantaneous actions that change the world state in some way

• Processes execute continuously under the direction of the world

– The world decides whether a process is active or not

• Events are the world’s version of actions: the world performs them when conditions are met

Durative action

Action/Event

Process

Action/Event

Modelling mixed discrete-continuous domains for planning, M Fox, D Long, Journal of Artificial Intelligence Research 27, 235-297 (2006)

Those action-and-change people

• A significant closely allied research community is that concerned with “Action and Change”

– Axiomatisations of relationships between actions and change

– Modelling of events

– Reasoning about knowledge and what is known to different agents

• Focus on logical formalisms underlying the reasoning about action and change (modal temporal
logics; branching logics etc)

Those Hybrid-Systems-Modelling People

• Another key community concerned with reasoning about actions and world states is the controls and
verification community

– They are concerned with actions, events and processes

– Worlds seen as transition systems (finite state hybrid automata)

– Continuous change modelled as rate-of-change values within states

• Hybrid automata can be model-checked (subject to key constraints)

– Usually concerned with checking all trajectories within some collection meet particular
conditions (eg not violating safety constraint)

A Timed Hybrid Automaton

Invariant

State name

Flow conditions

While the state invariant remains true the
system can reside in this state

Jump condition

While in this state, the flow
conditions are active (which
specify rates of change for
variables) A transition is only possible

along this edge if the jump
conditions are satisfied

Hybrid automaton state

Jump effects

When the transition occurs,
the effects update variables

A theory of timed automata
R Alur, DL Dill
Theoretical computer science 126 (2), 183-235 (1994)

THA and PDDL+

• THAs express uncontrolled uncertainty using flow conditions that specify ranges of possible values
for rates of change

• Events and actions are not distinguished explicitly

– Deterministic events are triggered when a state invariant is violated by the changes caused by
the flow conditions in the same state

– Other transitions could be non-deterministic events or actions

Simple Example

• When starting to drill a well, the first stage is called “spudding” and it is
often drilled “open hole”

– The hole is filled with fluid, pumped down the hole through the drill s
pipe, to carry the cuttings back up out of the hole

– The liquid is pumped from a tank and the waste is pumped into a mud return pit

– The liquid is a mix of water and some chemicals (eg anti-foaming agent) and has to be prepared
in advance of drilling

Mixing Tank

Water pumped from source

Main mud pump

Liquid pumped
down hole

Returns to pit
with cuttings

Small pump

What’s the Problem?

• The mud-engineer has to fill the tank with the slower small pump and mix the fluid

• The driller will turn on the main pump when they want to drill, consuming fluid from the tank

• What is the plan for drilling to a depth, d, say?

• Drilling must stop if the tank runs dry… the small pump must stop if the tank is full… mixing requires
a minimum water level… once mixed, new additive must be added if the concentration gets too
low…

Turn on small pump

Add-and-mix

Start main pump and drill

Turn off main pump and drill

What makes it hybrid?

• When actions or events are performed they cause instantaneous changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world state

– A process will run over time, changing the world at every instant

Mixing Tank

Water pumped from source

Small pump
Filling process

Turn on pump
(Action) Add and mix

(Action)

Overflow!!
(Event)

Depth increasing
Depth constant

Depth constant

Precondition depends on depth

PDDL2.1 Tanks and Pumps

Wait! I still don’t get it…

• Why not simply abstract continuous change: discretise it at fixed time points?

• Two problems with this idea:

– Not always easy to predict what discretisation is necessary in order to find a plan without
building the plan first…

– Fine-grained discretisation leads to many choice points during plan construction

Value

Time

Step function discretisation

Refined step function discretisation

Della Penna, G., Magazzeni, D., Mercorio, F., & Intrigila, B. (2009). UPMurphi: A Tool for Universal Planning on PDDL+ Problems. Proceedings of the International Conference on
Automated Planning and Scheduling, 19(1), 106-113.
Heuristic Planning for PDDL+ Domains Wiktor Piotrowski,1 Maria Fox,1 Derek Long,1 Daniele Magazzeni,1 Fabio Mercorio (IJCAI 2016)
A Practical Approach to Discretised PDDL+ Problems by Translation to Numeric Planning
Francesco Percassi, Enrico Scala, Mauro Vallati (JAIR 76, 2023)

How can we work with this?

First, note that the process effect in this model is of the form:

(increase (var) (* <constant> #t))

This can be interpreted as meaning:
𝑑

𝑑𝑡
𝑣 = 𝑚 for a variable, v, and a constant, m

We solve this differential equation by integration: v(t) = mt + c (for some new constant, c)

We establish the value of c by considering the value of v at t = 0 (the initial value of v when the process starts)

This gives us a linear equation determining the value of v at time t and we can assemble this equation into a
linear program that captures the constraints on the times at which processes start or end, together with
constraints on the values of the variable v, based on a collection of actions being proposed as a framework for
a plan – a solution to the LP will then establish the actual plan

Forward-chaining partial-order planning
A Coles, A Coles, M Fox, D Long - Proceedings of the International Conference on Automated Planning and Scheduling 2010

Planning with Time and Processes

• A classical plan is a sequence of instantaneous actions

• A temporal plan is a classical plan in which the actions are also assigned an execution time

• A temporal plan with processes is a temporal plan with constraints on the relationships between the
action times and numeric variables in the plan state

• So… we can search over classical plans that achieve the goals and then set up the mathematical program
over action start times and the corresponding process effects, to ensure preconditions are achieved

A1 A2 A3 A4 An…

t1 t2 t3
t4 tn

x2 = P(t2 – t1) + x1

x1

Some efficiency improvements

• Avoid ordering time points where possible (partial order structure)

• Check constraints incrementally (don’t build the whole classical plan before checking it)

• Keep the incremental solutions and use them as the starting point to check the next incremental
constraint set (warm start the solver)

• Use bounds from the solution to prune the search space for the classical plan (smart inference)

• Use approximations of the process effects to suggest actions (smart search) and estimate remaining
plan duration (smart pruning)

Extending the Model – Non-Linear Change

• If we consider the concentration of anti-foaming agent in the tank, we can add constraints:

– No drilling if the concentration is lower than some minimum (wait until agent is added)

– No adding agent if the concentration is higher than some level (wait until agent is diluted)

• Concentration c(t) can be taken to be proportional to the mass of agent in the tank, m(t), divided by
the depth, d(t) (the cross sectional area is then part of the constant of proportionality)

– We have: c(t) = Km(t)/d(t)

• The mass in the tank decreases as the content is pumped out, depending on the concentration:

– We have: dm/dt = -p_o c(t) where p_o is the output pump rate

• A bit of maths and we get:

dc/dt = -p_i c(t)/d(t) where p_i is the input pump rate

And in PDDL…

• But this is too hard for planners – and even for VAL!

Solution has d(t) linear in t, but c(t) in the
form: k(A t + b)-1/A for constants A, b, k
while drilling and filling concurrently

Note the coupled effects
imply coupled
differential equations

Time passes too fast!

• Things I did not have time to cover…

• Modelling and semantics:
– Epsilon – the minimum time that the executive requires to react to an observed event and initiate an

action, but also to model that no executive can execute actions simultaneously and yet ordered
– How do we ensure that continuous change cannot lead to agents measuring time with greater

precision than the epsilon suggests?
– Time paradoxes for events – for the world, epsilon = 0? What happens if we have events that cascade

infinitely often in a single instance?

• Planning with continuous change, processes and events:
– Linear change – exploit a linear program solver to find time points solving constraints
– Non-linear constraint solvers for some more complex constraints
– Processes and events – “benign” versions can be handled by allowing the planner to exploit them by

need… “harmful” effects have to be forced and this usually involves expensive compiled machinery in
the domain model…

And this, too, shall pass

• Plans and execution:

– How does an executive use a plan? Particularly one that models continuous change?

– How do we resolve the differences between the model and reality – tiny changes/fluctuations in
rates of change, measurement precision, observation accuracy…

Spare slides…

What about non-linear?

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time

PDDL2.1: Where the planning meets the metal

• PDDL2.1 adds durative actions to PDDL

– Keep in mind: durative actions can include continuous change effects and variable durations

(:durative-action drop-ball

 :parameters (?b – ball)

 :duration (> ?duration 0)

 :condition (and (at start (holding ?b)) (at start (= (velocity ?b) 0)))

 :effect (and (at start (not (holding ?b)))

 (decrease (height ?b) (* #t (velocity ?b)))

 (increase (velocity ?b) (* #t (gravity)))))

Notice how the two continuous effects interact

PDDL2.1: Dropping the ball

• What happens if there is a floor?

• Duration of the drop-ball action is limited by the distance to the floor...

(:durative-action drop-ball

 :parameters (?b – ball)

 :duration (> ?duration 0)

 :condition (and (at start (holding ?b)) (at start (= (velocity ?b) 0))

 (over all (>= (height ?b) 0)))

 :effect (and (at start (not (holding ?b)))

 (decrease (height ?b) (* #t (velocity ?b)))

 (increase (velocity ?b) (* #t (gravity)))))

But what happens if we leave the ball to fall?

PDDL+: Let’s see it bounce

• A “better” model is to see releasing the ball as separated from the fate of the ball after it falls

– Release initiates a process of falling

• The falling process can be terminated by various possible actions (catching, hitting, ...) or events
(bouncing)

• How does this look in PDDL+

PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

 :parameters (?b – ball)

 :precondition (and (holding ?b) (= (velocity ?b) 0))

 :effect (and (not (holding ?b))))

(:process fall

 :parameters (?b – ball)

 :precondition (and (not (holding ?b)) (>= (height ?b) 0)))

 :effect (and (increase (velocity ?b) (* #t (gravity)))

 (decrease (height ?b) (* #t (velocity ?b)))))

PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

 :parameters (?b - ball)

 :precondition (and (>= (velocity ?b) 0)

 (<= (height ?b) 0))

 :effect (and (assign (height ?b) (* -1 (height ?b)))

 (assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

 :parameters (?b - ball)

 :precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

 :effect (and (holding ?b) (assign (velocity ?b) 0)))

Note the slight fudge here

A Valid Plan

• Let it bounce, then catch it...

• What does the validator say?

• Note the discontinuities in the velocity and the quadratic height function

0.1: (release b1)

4.757: (catch b1)

What happens if the ball is not perfectly elastic?

• Modify the bounce event slightly...

• Notice that the coefficient of restitution is given a –ve sign to make it
easier to use!

• Notice further that the precondition on height is slightly relaxed to allow
bouncing to happen until the ball is too close to bounce any more...

(:event bounce

 :parameters (?b - ball)

 :precondition (and (>= (velocity ?b) 0)

 (<= (height ?b) 0.00001))

 :effect (and(assign (velocity ?b) (* (coeffRest ?b) (velocity ?b)))))
14 bounces!

Zeno behaviour

• If we look closely at the bouncing ball, we see that eventually the events are so close (in an idealised
view, at least) that infinitely many bounces happen in a finite time

• This is Zeno behaviour and it is A Bad Thing

– Cannot reason about infinite events in finite time in planner, validator or pretty much anywhere
else...

• Check the VAL report

This is where we see events getting too close

Cascading events

• Events (and processes) can be problematic in lots of interesting ways

• It is easy to set up events that trigger each other:

– Imagine a light connected to a light-sensitive switch, so that when the light is on it triggers an
event which turns the light off...

– But, when the light is off an event is triggered that turns it on!

• What is the best model?

– Processes measuring time between switches?

– Other states and events?

Other Semantic Issues

• Events with strict inequality preconditions can create an interesting problem

• When does E occur?

– At time 10, (x) = 10, so the precondition of E is not satisfied

– At time 10+, for any >0, the precondition is satisfied, but it was satisfied at 10+/2 and so E
should trigger before 10+

(:event E

 :precondition (> 10 (x))

 :effect (and (not (active)) (explode)))

(:process P

 :precondition (active)

 :effect (increase (x) (* #t 1)))

:init (= (x) 0) (active)

PDDL+ is expressive!

• PDDL+ is strictly more expressive than PDDL2.1

• This is because of events, which mean that plan validation is undecidable, which is not the case for
(propositional) PDDL2.1

• Adding continuous effects can make PDDL2.1 plan validation undecidable if the behaviours are
particularly unpleasant

– Functions with many turning points in an interval over which an invariant condition must hold
will require that all the zeros of a function be found within the interval

We can say so much, but what can we do?

• Planning with linear processes is possible

– Exploit linear programming to do the reasoning about process effects

• Observe that plans define a sequence of happenings which are actions, events or process triggers,
each at specific time points

– The time points need not be evenly spaced, but a plan can be built by deciding how effects
should be achieved (or managed) and when the actions used to do this should be executed

The Things We Need (for Forward State Space search)

• State progression when there are active processes and invariants

• A heuristic to select good actions when we search for a plan (forward state space search)

• However, if we choose when to execute an action too quickly, we face an infinite choice parameter:

– Delay commitment to actual times, but simply commit to order

– Use the LP to help us to narrow down choices of when to do things until the choice is removed,
or the plan is complete

Another simple example

• A borrower/saver wishes to buy a house and pay off the mortgage

– Can save a deposit and then, depending on how much is saved, select between different
mortgages

– Objective is to eventually take a “life audit” and confirm debt is paid and home is owned

Domain model

Plans for Borrowers

Save hard

Take mortgage

Life audit

Need deposit for mortgage

Have to start life audit
before finishing saving

Own house

Duration = patience

Happy!

Have to own
house before
this is done

Plans for Borrowers

Save hard

Take mortgage

Life audit

d money += 1
dt

d money -= 1
dt

d money -= repay rate
dt

d money += repay rate
dt

Money

Spend deposit

Sensitive bounds…

Take mortgage
Min savings

Max savings

(over all)

(at start)

Saving rate Saving and repayment
rate

Not too early (not enough money for deposit)

Not too late (savings get too high for mortgage constraints)

Planning with Simple Temporal Networks

Save hard

Take mortgage

Life audit

save_start

save_end

[,∞]

mortgage_end

mortgage_start

[10,10]

[,∞]

lifeAudit_start

lifeAudit_end

[patience,patience]

[mortgage,mortgage]
[,∞]

[,∞]

STN can be expressed as an LP

• To handle temporal-numeric interaction, we build an LP to model the numeric
behaviour of actions

• For each action Ai:

– add a set of variables Vi denoting the values of the numeric state variables before
Ai

– and a set V’i denoting the values after the discrete effects of Ai

• Preconditions of the action Ai can be added as constraints over Vi:

Encoding numeric state variables in an LP

Ai+1Ai

Vi V’i Vi+1
V’i+1

moneyi  0

• So far, focus has been on instantaneous change: between Vi and V’i

• In a continuous setting change also occurs between V’i and Vi+1 while remaining in a single state

Encoding linear continuous change in the LP

Ai+1Ai

V0 [V’0, V1) [V’1, V2)

V0
V’0

V1 V’1

V2

time

• The LP is constructed by tracking the active continuous change and combining multiple updates on
the same variable

– Initially, for each variable v, v0 = 0 – no change active

– If stepi is the start of an action that increases the rate of change of v by m, vi+1 = vi + m

– If stepi is the end of such an action, vi+1 = vi - m

LP Constraints

Change within a state

Stepi-1

v’i-1

vi
Stepi

v’i

vi+1

vi+2

Stepi+1

Stepi+2

v’i+1

vi-1=0 vi=vi-1+m vi+1=vi+n vi+2=vi+1-n

Step i-1 increases the rate of change of v by m
Step i increases the rate of change of v by n
Step i+1 decreases the rate of change of v by n

• Constraints combining the discrete and time-dependent change can now
be written as:

Vi+1 = V’i + Vi+1.(stepi+1 - stepi)

• The LP then encodes interacting temporal-numeric consistency

Encoding linear continuous change

money2 = money’1 + (saving-rate – repayment-rate).(step2 – step1)

Extending the Temporal RPG

stepnow - stepi

stepi

V’i

Vnow

stepnow

stepnow ≥ stepi + 
Vnow = V’i + Vi+1 (stepnow – stepi)

Lpsolve computes upper and lower
bounds for Vnow and stepnow

These bounds are used to create the
first layer of the temporal RPG

We relax continuous effects into
optimistic discrete effects at the starts
of actions… but reconsider this later!

Because of continuous change we don’t know the exact values
of variables or time points of actions

We can compute bounds on these from constraints

Borrower Plan

start-saving

start-mortgage

start-audit

stop-mortgage

money0

money0 = 0

money’0 = money0

money’0 ≥ 0
money1 = money’0 – 1(start-mortgage - start-saving)
money1 ≥ 0

money’0

money1

money’1

money2 money’2

money3

money’3

money4

save-rate = 1
repay-rate = 0.75

money’1 = money1 - deposit
money’1 ≥ 0
money2 = money’1 + 0.25 (start-audit – start-mortgage)

money’2 = money2

money’2 ≥ 0
money3 = money’2 –
 0.25 (stop-mortgage – start-audit)

money’3 = money3

money’3 ≥ 0
money4 = money’3 + 1(now – stop-mortgage)

Heuristic Values

• A state is assigned a value based on the relaxed plan to achieve the goals, but using makespan (in the
relaxed plan) as a tie-breaker between states

– Different schemes are possible to weight more heavily towards makespan

• The makespan is estimated by building a Temporal Relaxed Planning Graph

– Layers are timestamped with the earliest time they can be reached

• Process effects interact with makespan: active processes determine an earliest time when
preconditions can be satisfied, where the process contributes to achieving them

– Simple heuristic: assume all process effects available immediately

– More complex: compute earliest time process effect available

Simple Heuristic

Better Heuristic

Events?

• Events and true processes are harder to handle, because they can generate happenings that are not
part of the plan

• The COLIN approach has been extended to handle them (for linear processes)

– See Coles&Coles

Closing Remarks

• Hybrid planning involves reasoning about continuous physical process models alongside discrete
actions and events

• Hybrid systems introduce granularity challenges: some reasoning on long horizons and some very
fine-grained

• Modelling processes and events gives a powerful language with subtle complexities

• Although we have some techniques for tackling these problems, solving planning problems in hybrid
systems still offers lots of open challenges

Controlling Continuous Systems in PDDL+

• A planner attempts to control a system by selection of actions

– The actions are the means of control

• A PDDL action generates a discrete change in a finite propositional space and, possibly, an infinite
discretised metric space

• How are continuous processes controlled in PDDL models?

• Eg: When refuelling the generator – how might the refuelling rate be controlled?

Discrete Control of Continuous Processes

• Could have a preset selection of flow rates

(:action setFlowRate
 :parameters (?f ?f1 – flow)
 :precondition (flowRate ?f)
 :effect (and (not (flowRate ?f)) (flowRate ?f1)
 (assign (theRateOfFlow) (valueFor ?f1))))

(:durative-action refuel
 :parameters (?f – flow)
 :duration (= ?duration (/ (canContent) (theRateOfFlow)))
 :condition (over all (flowRate ?f))
 :effect (increase (fuelLevel) (* #t (theRateOfFlow))))

Discrete Control of Continuous Processes

• Could extend this to a discrete metric control:

(:action increaseFlowRate
 :parameters ()
 :precondition ()
 :effect (increase (theRateOfFlow) 1))

(:process refuel
 :parameters ()
 :precondition (and (> (theRateOfFlow) 0) (> (content) 0))
 :effect (and (increase (fuelLevel) (* #t (theRateOfFlow)))
 (decrease (content) (* #t (theRateOfFlow)))))

Continuous Control of Continuous Processes

• Finally, we could allow continuous control:

(:process increaseFlowRate
 :parameters ()
 :precondition (tipping)
 :effect (increase (theRateOfFlow) #t))

(:process refuel
 :parameters ()
 :precondition (and (> (theRateOfFlow) 0) (> (content) 0))
 :effect (and (increase (fuelLevel) (* #t (theRateOfFlow)))
 (decrease (content) (* #t (theRateOfFlow)))))

(:action tip
 :parameters ()
 :precondition ()
 :effect (and (not (levelling))
 (tipping))

(:action lower
 :parameters ()
 :precondition (tipping)
 :effect (and (levelling)
 (not (tipping)))

(:event levelled
 :parameters ()
 :precondition (and (levelling)
 (= (theRateOfFlow) 0))
 :effect (not (levelling)))

(:process decreaseFlowRate
 :parameters ()
 :precondition (and (> (theRateOfFlow) 0) (levelling))
 :effect (decrease (theRateOfFlow) #t))

Refuel

Continuous Control of Continuous Processes

Tip Lower

d (fuel-level) = (theRateOfFlow)
dt

d (theRateOfFlow) = 1
dt

(fuel-level) = t2/2 + (fuel-level)0

Levelled

d (fuel-level) = (theRateOfFlow)
dt

d (theRateOfFlow) = -1
dt

(fuel-level) = t*(maxFlowRate) - t2/2 + (fuel-level)1

Note: Discontinuity in the second
derivative of fuel-level makes application
of non-linear optimisation approaches
much harder

Continuous Control

• Control is only through the choice of when to execute actions

• Numbers are not first-class objects, so cannot be selected as parameter values

• Intuitively acceptable model of analogue control

– Setting control level takes time – the level is proportional to the time spent changing it

• But....

– Inconvenient for highly variable control levels that can be changed very fast relative to process
being influenced (eg accelerator setting on car)

– Seems counter-intuitive for some controls (Eg the amount of honey I scoop onto a teaspoon does
not seem to be proportional to the time I spend scooping it)

Key Observations

• PDDL+ is (by design) able to express only finitely many ground actions

• Therefore, choices are always finite, except for the choice of when to execute an action

– The timeline is continuous, real-valued

• The (deterministic) Timed Hybrid Automaton offers the same model

A Different Model

• An alternative view is that actions could have metric parameters

• A Discrete Time Automaton uses discrete time points corresponding to “clock ticks” and continuous
control parameters for its actions

– Thus, there is less choice about when things can be done, but more choice about what can be
done at those times

• Arguably, a better model of a digital controller (which can only act on clock cycles), although
parameters are, in practice, also discretised for such a device

Yet Another View

• Real processes are never precisely predictable, so it is most useful to imagine having a lower level
controller that will use a tight feedback loop to manage process behaviours

• Therefore, the choice of control parameters lies in a range and the interesting question is only about
the envelope of the process controlled by that range over time

• A hybrid planner is concerned with:

– selecting discrete actions and

– the timing of such actions

• But it will rely on a lower level system to realise the actual control of processes within their
envelopes in order to meet constraints in the plan

	Slide 1: Automated Planning Around Processes
	Slide 2: What is it and why do we care?
	Slide 3: Planning and Control
	Slide 4: Mixed Dynamics
	Slide 5: Mixed Discrete-Continuous Systems
	Slide 6: AI Planning
	Slide 7: Temporal Planning
	Slide 8: The key ingredients
	Slide 9: Capturing Continuous Change
	Slide 10: Modelling Continuous Effects in PDDL2.1
	Slide 11: What happens in PDDL+?
	Slide 12: Those action-and-change people
	Slide 13: Those Hybrid-Systems-Modelling People
	Slide 14: A Timed Hybrid Automaton
	Slide 15: THA and PDDL+
	Slide 16: Simple Example
	Slide 17: What’s the Problem?
	Slide 18: What makes it hybrid?
	Slide 19: PDDL2.1 Tanks and Pumps
	Slide 20: Wait! I still don’t get it…
	Slide 21: How can we work with this?
	Slide 22: Planning with Time and Processes
	Slide 23: Some efficiency improvements
	Slide 24: Extending the Model – Non-Linear Change
	Slide 25: And in PDDL…
	Slide 26: Time passes too fast!
	Slide 27: And this, too, shall pass
	Slide 28: Spare slides…
	Slide 29: What about non-linear?
	Slide 30: PDDL2.1: Where the planning meets the metal
	Slide 31: PDDL2.1: Dropping the ball
	Slide 32: PDDL+: Let’s see it bounce
	Slide 33: PDDL+: Let it go
	Slide 34: PDDL+: See it bounce
	Slide 35: A Valid Plan
	Slide 36: What happens if the ball is not perfectly elastic?
	Slide 37: Zeno behaviour
	Slide 38: Cascading events
	Slide 39: Other Semantic Issues
	Slide 40: PDDL+ is expressive!
	Slide 41: We can say so much, but what can we do?
	Slide 42: The Things We Need (for Forward State Space search)
	Slide 43: Another simple example
	Slide 44: Domain model
	Slide 45: Plans for Borrowers
	Slide 46: Plans for Borrowers
	Slide 47: Sensitive bounds…
	Slide 48: Planning with Simple Temporal Networks
	Slide 49: Encoding numeric state variables in an LP
	Slide 50: Encoding linear continuous change in the LP
	Slide 51: LP Constraints
	Slide 52: Change within a state
	Slide 53: Encoding linear continuous change
	Slide 54: Extending the Temporal RPG
	Slide 55: Borrower Plan
	Slide 56: Heuristic Values
	Slide 57
	Slide 58: Simple Heuristic
	Slide 59: Better Heuristic
	Slide 60: Events?
	Slide 61: Closing Remarks
	Slide 62: Controlling Continuous Systems in PDDL+
	Slide 63: Discrete Control of Continuous Processes
	Slide 64: Discrete Control of Continuous Processes
	Slide 65: Continuous Control of Continuous Processes
	Slide 66: Continuous Control of Continuous Processes
	Slide 67: Continuous Control
	Slide 68: Key Observations
	Slide 69: A Different Model
	Slide 70: Yet Another View

