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What is it and why do we care?

* Many of our interactions with the world involve us performing actions that initiate, terminate,
control or simply avoid continuous processes

* Processes can represent flows: heat, energy, liquids, gases, traffic, money, information
* Reactions, motion, growth and contraction



Planning and Control

Planners are designed to tackle “long horizon” discrete control problems — “long” means multi-action

Mixed discrete-continuous planning problems are hard hybrid control problems at wide ranging
granularities

I)I

Planners are traditionally aimed at achieving target end states — the planning “control” problem is

about moving efficiently towards a good end state

Control systems are usually concerned with trajectories — they are designed to keep the behaviour
close to a nominal trajectory




Mixed Dynamics

* Control involves making several distinct types of decision:

— Action choices (open this valve or that valve? Use this cutting tool or switch to a different tool?
Etc)

* Discrete choices leading to mode changes
e Often at longer horizon
— Timing choices (this first or that? Perform this at time t? Etc)
* Discrete or continuous?
* Depends on temporal model
— Parameter choices (flow rates, power levels, distance to move, angle to turn etc)

* Generally continuous parameter spaces and choice governed by mathematical functions
e Often at short horizon



Mixed Discrete-Continuous Systems

Optimising purely continuous functions is a mathematical problem
— Linear functions well understood and tractable
— Non-linear functions manageable under certain conditions
Common strategy is to linearise over sufficiently short horizons and use LP

Discrete control choices introduce combinatorial complexity
Control of discrete systems involves search

— Mixed discrete-continuous optimisation is NP-hard with linear functions (eg adding integer
constraints to some variables)




Al Planning

Given:
— A domain model (action templates — specify preconditions and effects)
— An initial state (specifies the objects, their current conditions/states and the goal condition)

Classically: precondition is a logical sentence over state variables; effect is a partial assignment to
state variables — unassigned variables assumed unchanged (STRIPS assumption)

Precondition

Effect

A plan is a sequence of instantiation actions that applies from the initial state to generate a state
satisfying the goal

Time is implicit only in the ordering of actions!




Temporal Planning

Duration

A
v

- At end conditions
At start conditions

Durative Action

At start effects At end effects

f

Over all conditions

Temporal planning with Boolean state variables is only interestingly different if actions may execute concurrently

Numeric state variables are hard, but the temporal dimension changes when time and numbers intera
* Variable durations that also change effects ’
* Continuous change

PDDL2. 1: An extension to PDDL for expressing temporal planning domains, M Fox, D Long, Journal of artificial intelligence research 20, 61-124 (2003)
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Capturing Continuous Change

Black-box: a process is running, but we only see the effect

Duration, d

v

A

- At end conditions
At start conditions

Durative Action

At start effects At end effects:

Induces a step change in
variable x
If duration is variable, then

effect is variable

Increase x (* m d)

Exposed: a process is within the durative action — we see its effect continuously

E—m
dt




Modelling Continuous Effects in PDDL2.1

* The effect is not associated with start or end (it happens continuously!)
* We write:
(increase x (* m #t)) Note could instead be a decrease effect

*  Why not “dx/dt = m”?

— Concurrent effects combine continuous contributions to change in x, so single action cannot
specify the value of dx/dt, only its contribution to it




What happens in PDDL+?

* Executive agents perform instantaneous actions that change the world state in some way

* Processes execute continuously under the direction of the world
— The world decides whether a process is active or not

e Events are the world’s version of actions: the world performs them when conditions are met

Durative action

Process

Action/Event Action/Event

Modelling mixed discrete-continuous domains for planning, M Fox, D Long, Journal of Artificial Intelligence Research 27, 235-297 (2006)




Those action-and-change people

* Asignificant closely allied research community is that concerned with “Action and Change”
— Axiomatisations of relationships between actions and change
— Modelling of events
— Reasoning about knowledge and what is known to different agents

* Focus on logical formalisms underlying the reasoning about action and change (modal temporal
logics; branching logics etc)




Those Hybrid-Systems-Modelling People

* Another key community concerned with reasoning about actions and world states is the controls and
verification community

— They are concerned with actions, events and processes
— Worlds seen as transition systems (finite state hybrid automata)
— Continuous change modelled as rate-of-change values within states

* Hybrid automata can be model-checked (subject to key constraints)

— Usually concerned with checking all trajectories within some collection meet particular
conditions (eg not violating safety constraint)




A Timed Hybrid Automaton

When the transition occurs,

the effects update variables
While the state invariant remains true the
system can reside in this state

Jump condition
Invariant

Jump effects

While in this state, the flow
conditions are active (which
specify rates of change for
variables)

Flow conditions

A transition is only possible
along this edge if the jump
conditions are satisfied

State name

Hybrid automaton state

A theory of timed automata
R Alur, DL Dill
Theoretical computer science 126 (2), 183-235 (1994)




THA and PDDL+

* THAs express uncontrolled uncertainty using flow conditions that specify ranges of possible values
for rates of change

* Events and actions are not distinguished explicitly

— Deterministic events are triggered when a state invariant is violated by the changes caused by
the flow conditions in the same state

— Other transitions could be non-deterministic events or actions




Simple Example

 When starting to drill a well, the first stage is called “spudding” and it is
often drilled “open hole”

— The hole is filled with fluid, pumped down the hole through the drill
pipe, to carry the cuttings back up out of the hole

— The liguid is pumped from a tank and the waste is pumped into a mud return pit

— The liquid is a mix of water and some chemicals (eg anti-foaming agent) and has to be prepared
in advance of drilling

Liquid pumped
Water pumped from source down hole

Returns to pit
with cuttings

Main mud pump
Small pump

Mixing Tank



What’s the Problem?

The mud-engineer has to fill the tank with the slower small pump and mix the fluid
The driller will turn on the main pump when they want to drill, consuming fluid from the tank
What is the plan for drilling to a depth, d, say?

Add-and-mix Turn off main pump and drill

Turn on small pump Start main pump and drill

v

Drilling must stop if the tank runs dry... the small pump must stop if the tank is full... mixing requires

a minimum water level... once mixed, new additive must be added if the concentration gets too
low... P —



What makes it hybrid?

 When actions or events are performed they cause instantaneous changes in the world
— These are discrete changes to the world state

— When an action or an event has happened it is over Water pumped from source

Depth increasing

Depth constant

Depth constant  Small pump

> Filling process >

Mixing Tank

Turn on pump

(Action) Add and mix

(Action)
Precondition depends on depth
* Processes are continuous changes

— Once they start they generate continuous updates in the world state
— A process will run over time, changing the world at every instant




PDDL2.1 Tanks and Pumps

(:durative-action fill-tank

:parameters (?p - pump 2?2t - tank)

:duration (<= ?duration 1000) |
:condition (and (at start (not (is-on ?p)))

(define (problem fill-and-mix)
(:domain mudtank)

(at start (feeds ?p 2t)) (:objects small mudpump - pump mixer - tank)
(over all (< (tank-level ?t) (max-depth ?t))) (:init (= (tank-level mixer) 0)
(over all (is-on ?p)) (= (pump-rate small) 2)
) (= (max-depth mixer) 100)
:effect (and (increase (tank-level ?t) (* #t (pump-rate ?p))) (= (hole-depth) 0)
(at start (is—qn ?2p)) (= (pump-rate mudpump) 10)
(at end (not (is-on 2?p))))) (= (drill-rate) 1)

(feeds small mixer)

:durative-acti add-mix :
{ o S o (feeds-hole mudpump mixer)

:parameters (?p - pump ?t - tank)

:duration (= 2duration 1) (= (target) 40)
:condition (and )
(at start (feeds ?p ?t)) (:goal (and (drilled))))

(at start (not (blended ?t)))

(over all (is-on ?p))

(over all (<= (tank-level ?t) (* (max-depth ?2t) 0.75)))
(over all (>= (tank-level 2?t) (/ (max-depth 2t) 2))))

:effect (and "0.00000: (fill-tank small mixer) [200.00500
(at end (blended ?t)) 25.00000: (add-mix small mixer) [1.00000]

) 49,99995: (drill mudpump mixer) [2.50129]
(:durative-action drild 62.50639: (drill mudpump mixer) [12.49999]
:parameters (?p - pump ?t - tank) 125.00632: (drill mudpump mixer) [12.49999] 5
:duration (<= 2duration 1000) 187.50626: (drill mudpump mixer) [12.49974] liia
:condition (and (at start (feeds-hole ?p ?t)) 200.00500: {inspect-huleﬂ N

(at start (>= (tank-level ?t) 80))
(over all (>= (tank-level 2?t) 0))
(over all (blended ?t)))
:effect (and (increase (hole-depth) (* #t (drill-rate)))
(decrease (tank-level 2?t) (* #t (pump-rate 2?p)))))




Wait! | still don’t get it...

* Why not simply abstract continuous change: discretise it at fixed time points?

Step function discretisation

Value Refined step function discretisation

Time
* Two problems with this idea:

— Not always easy to predict what discretisation is necessary in order to find a plan without
building the plan first...

— Fine-grained discretisation leads to many choice points during plan construction

Della Penna, G., Magazzeni, D., Mercorio, F., & Intrigila, B. (2009). UPMurphi: A Tool for Universal Planning on PDDL+ Problems. Proceedings of the International Conference on
Automated Planning and Scheduling, 19(1), 106-113.

Heuristic Planning for PDDL+ Domains Wiktor Piotrowski,1 Maria Fox,1 Derek Long,1 Daniele Magazzeni,1 Fabio Mercorio (IJCAI 2016)
A Practical Approach to Discretised PDDL+ Problems by Translation to Numeric Planning

Francesco Percassi, Enrico Scala, Mauro Vallati (JAIR 76, 2023)



How can we work with this?

First, note that the process effect in this model is of the form:
(increase (var) (* <constant> #t))
: : . d :
This can be interpreted as meaning: Lv=m for a variable, v, and a constant, m

We solve this differential equation by integration: v(t) = mt + ¢ (for some new constant, c)

We establish the value of c by considering the value of v at t = 0 (the initial value of v when the process starts)

This gives us a linear equation determining the value of v at time t and we can assemble this equation into a
linear program that captures the constraints on the times at which processes start or end, together with
constraints on the values of the variable v, based on a collection of actions being proposed as a frame

a plan — a solution to the LP will then establish the actual plan -

Forward-chaining partial-order planning
A Coles, A Coles, M Fox, D Long - Proceedings of the International Conference on Automated Planning and Scheduling 2010



Planning with Time and Processes

* Aclassical planis a sequence of instantaneous actions

X, = P(t, = t;) + x4
X1 /

 Atemporal planis a classical plan in which the actions are also assigned an execution time

A temporal plan with processes is a temporal plan with constraints on the relationships between the
action times and numeric variables in the plan state

* So... we can search over classical plans that achieve the goals and then set up the mathematical progr




Some efficiency improvements

Avoid ordering time points where possible (partial order structure)
Check constraints incrementally (don’t build the whole classical plan before checking it)

Keep the incremental solutions and use them as the starting point to check the next incremental
constraint set (warm start the solver)

Use bounds from the solution to prune the search space for the classical plan (smart inference)

Use approximations of the process effects to suggest actions (smart search) and estimate remaining
plan duration (smart pruning)



Extending the Model — Non-Linear Change

If we consider the concentration of anti-foaming agent in the tank, we can add constraints:
— No drilling if the concentration is lower than some minimum (wait until agent is added)
— No adding agent if the concentration is higher than some level (wait until agent is diluted)

Concentration c(t) can be taken to be proportional to the mass of agent in the tank, m(t), divided by
the depth, d(t) (the cross sectional area is then part of the constant of proportionality)

— We have: c(t) = Km(t)/d(t)

The mass in the tank decreases as the content is pumped out, depending on the concentration:
— We have: dm/dt =-p_o c(t) where p_o is the output pump rate

A bit of maths and we get:
dc/dt=-p_ic(t)/d(t) where p_iis the input pump rate




And in PDDL...

Note the coupled effects
imply coupled
But this is too hard for nlanners — and even for VAL! differential equations

(:durative-action fill-tank
:parameters (?p - pump 7t - tank)
rduration (<= ?duration 1000)
:condition (and (at start (mot (is-on 2?p)))
(at start (feeds ?p ?7t))
(over all (< (tank-level ?t) (max-depth ?2t)))
{over all (is-on ?7p))
)
:effect (and (increase (tank-lewvel 2t) (* #t (pump-rate ?p)))

(decrease (concentration) (* #t (/ (* (pumlz;;i;'flzgél{Sz????tratiomJ SOIUt'On haS d(t) Ilnear |n t; bUt C(t) In the
‘ot end et (o-cn wo11) form: k(A t + b)/Afor constants A, b, k
(:durative-action add-mix while drilling and filling concurrently

:parameters (?p - pump ?t - tank)
:duration (= ?duration 1)
:condition (and
(at start (<= (concentration) 0.1))
(at start (feeds ?p ?t))
; (at start (not (blended ?t)))
(over all (is-on ?p))
{over all (<= (tank-lewvel 2t) (* (max-depth 2t) 0.75)))
(over all (>= (tank-level 2t) (/ (max-depth 2t) 2))))
:effect (and
;(at end (blended 2t))
(at end (assign (concentration) (/ 100 (tank-level 2t))))
)

:durative-action drill
:parameters (?p - pump ?t - tank)
:duration (<= ?duration 1000)
:condition (and (over all (>= (concentration) 0.2))
(at start (feeds-hole ?p 2t))
(at start (>= (tank-level 2t) B0))
{owver all (»= (tank-lewvel ?t) 0))
; (over all (blended ?7t))
h
:effect (and (increase (hole-depth) (* (drill-rate) #t))
(decrease (tank-lewvel 2t) (* (pump-rate 2p) #t))))

—_




Time passes too fast!

* Things | did not have time to cover...

* Modelling and semantics:

* Planning with continuous change, processes and events:

Epsilon —the minimum time that the executive requires to react to an observed event and initiate an
action, but also to model that no executive can execute actions simultaneously and yet ordered

How do we ensure that continuous change cannot lead to agents measuring time with greater
precision than the epsilon suggests?

Time paradoxes for events — for the world, epsilon = 0? What happens if we have events that cascade
infinitely often in a single instance?

Linear change — exploit a linear program solver to find time points solving constraints
Non-linear constraint solvers for some more complex constraints

Processes and events — “benign” versions can be handled by allowing the planner to exploit them by~ &
need... “harmful” effects have to be forced and this usually involves expensive compiled machln y |n i
the domain model... ) i



And this, too, shall pass

* Plans and execution:
— How does an executive use a plan? Particularly one that models continuous change?

— How do we resolve the differences between the model and reality — tiny changes/fluctuations in
rates of change, measurement precision, observation accuracy...




Spare slides...




What about non-linear?

Holding ball Not holding bai!

Action: drop ball Height over time

Ball falling




PDDL2.1: Where the planning meets the metal

PDDL2.1 adds durative actions to PDDL
— Keep in mind: durative actions can include continuous change effects and variable durations

(:durative-action drop-ball
:parameters (?b - ball)
:duration (> ?duration 0)
:condition (and (at start (holding ?b)) (at start (= (velocity ?b) 0)))
:effect (and (at start (not (holding ?b)))
(decrease (height ?b) (* #t (velocity ?b)))
(increase (velocity ?b) (* #t (gravity)))))

Notice how the two continuous effects interact




PDDL2.1: Dropping the ball

 What happens if there is a floor?

* Duration of the drop-ball action is limited by the distance to the floor...

(:durative-action drop-ball

:parameters (?b - ball)

:duration (> ?duration 0)

:condition (and (at start (holding ?b)) (at start (= (velocity ?b) 0))
(over all (>= (height ?b) 0)))

:effect (and (at start (not (holding ?b)))
(decrease (height ?b) (* #t (velocity ?b)))
(increase (velocity ?b) (* #t (gravity)))))

But what happens if we leave the ball to fall?




PDDL+: Let’s see it bounce

A “better” model is to see releasing the ball as separated from the fate of the ball after it falls
— Release initiates a process of falling

The falling process can be terminated by various possible actions (catching, hitting, ...) or events
(bouncing)

How does this look in PDDL+




PDDL+: Let it go

* Firstdropit...

(:action release

:parameters (?b — ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))
:effect (and (not (holding ?b))))

e Then watch it fall...

(:process fall

:parameters (?b - ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))
(decrease (height ?b) (* #t (velocity ?b)))))

e Andthen?



PDDL+: See it bounce

* Bouncing...
& Note the slight fudge here

(:event bounce
:parameters (?b - ball)
:precondition (and (>= (velocity ?b) 0)
(<= (height ?b) 0))
:effect (and (assign (height ?b) (* -1 (height ?b)))
(assign (velocity ?b) (* -1 (velocity ?b)))))

* Now let’s plan to catch it...

(:action catch
:parameters (?b - ball)
:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))
:effect (and (holding ?b) (assign (velocity ?b) 0)))




1.51421: Event triggered!
Triggered event (bounce bl)
Walue Unactivated process (fall bl)
10 Updating (height bl) (-2.22045e-15) by 2.22045e-15 assignment.
Updating (velocity bl) (14.1421) by -14.1421 assignment.

1.51421: Event triggered!
Activated process (fall bl)

4.34264: Checking Happening... ... OR!

Let |‘t (height b1)(t) = —5t? + 14.1421¢ 4 222045 — 15

{velocity b1)(t) = 10¢ — 14.1421

Updating {height b1) (2.22045e-15) by -2.44943e-15 for contin-
uous update.

Updating (velocity bl) (-14.1421) by 14.1421 for continuous up-
date.

4.34264: Event triggered!
Triggered event (bounce bl)
] Unactivated process (fall bl)
Wha Updating (height b1) (-2.44943e-15) by 2.44943e-15 assignment.
—201495[1]‘38— 15 Updating {wvelocity b1) (14.1421) by -14.1421 assignment.

. 4.34264: Event triggered!
NOte Fi Activated process (fall bl)
4.75T: Checking Happening,... ... OR!

(height b1)(t) = —5t? + 14.1421¢ + 2.44943¢ — 15
{(velocity bl)(t) = 10f — 14,1421

Updating
update,
Updating
update.

4.757:  Checking L ' Wt
Adding (
Updating

4.757T: Event &
Lnactiva
-14.1421

Figure 2.2: Graph of {velocity bl).

Plan executed succe



What happens if the ball is not perfectly elastic?

WValue

10 |

14 bounces!

Time

j ' 14757
Figure 2.1: Graph of (height bl).
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If we look c
view, at lea

This is Zenc

— Cannot
else...

Check the \

Zeno behaviour

5.74146: Checking Happening... ...OK!
(height b1)(t) = —5¢t% + 0.0513073t + 1e — 08 an idealised
(velocity b1)(t) = 10t — 0.0513073
Updating (height b1) (1e-08) by 1e-08 for continuous update.
Updating (velocity b1) (-0.0513073) by 0.0513073 for continu-
ous update. :

y 1 anywhere
5.74146: Event triggerfi:

...Error!
Attempt to trigger event (bounce bl) twice

N

This is where we see events getting too close

Plan failed to execute



Cascading events

* Events (and processes) can be problematic in lots of interesting ways

* |tis easy to set up events that trigger each other:

event which turns the light off...
— But, when the light is off an eventg

* Whatis the best model?
— Processes measuring time between switches?
— Other states and events?



Other Semantic Issues

* Events with strict inequality preconditions can create an interesting problem

(:event E
:precondition (> 10 (x))

:effect (and (not (active)) (explode)))
(active)
tiicrease (x) (* #t 1)))

* When does E occur? (active)

— At time 10, (x) = 10, so the precondition of E is not satisfied

— At time 10+¢, for any £>0, the precondition is satisfied, but it was satisfied at 10+¢/2 and so E
should trigger before 10+¢




PDDL+ is expressive!

PDDL+ is strictly more expressive than PDDL2.1

This is because of events, which mean that plan validation is undecidable, which is not the case for
(propositional) PDDL2.1

Adding continuous effects can make PDDL2.1 plan validation undecidable if the behaviours are
particularly unpleasant

— Functions with many turning points in an interval over which an invariant condition must hold
will require that all the zeros of a function be found within the interval




We can say so much, but what can we do?

* Planning with linear processes is possible
— Exploit linear programming to do the reasoning about process effects

* Observe that plans define a sequence of happenings which are actions, events or process triggers,
each at specific time points

— The time points need not be evenly spaced, but a plan can be built by deciding how effects
should be achieved (or managed) and when the actions used to do this should be executed




The Things We Need (for Forward State Space search)

» State progression when there are active processes and invariants
* A heuristic to select good actions when we search for a plan (forward state space search)

 However, if we choose when to execute an action too quickly, we face an infinite choice parameter:
— Delay commitment to actual times, but simply commit to order

— Use the LP to help us to narrow down choices of when to do things until the choice is removed,
or the plan is complete




Another simple example

* A borrower/saver wishes to buy a house and pay off the mortgage

— Can save a deposit and then, depending on how much is saved, select between different
mortgages

— Objective is to eventually take a “life audit” and confirm debt is paid and home is owned




Domain model

[:durative-action saveHard (:durative-action lifeludit
tparameters () tparameters ()
tduration (= 7?duration 10) tduration (= Zduration (patience))
rcondition rcondition

[and (at start (canSawve)) fand (at start (saving))

{over all (== (money) 0})) (at end (boughtHouse))

reffect {at end (>»= (money) 0)))

[and {(at start (not (canSawve))) teffect (and (at end (happy)))l)

(at end (canSawve))

(at =start (saving))

(at end (not (saving)))
(increase (money) (* #t 1))))

[:durative—action takeMortgage
iparameters (Ym — mortgage)
tduration (= 7?duration (durationFor 7Zm))
rcondition
(and (at start (saving))
(at start (»= (money) (depeositFor 7Fm)))
(owver all (<= (money) (maxSavings 7m})))
reffect
(and (at start (decrease (money) (depositFor Zm)))
(decrease (money) (» #t (interestRateFor 7?m)))
{at end (boughtHouse))))




Plans for Borrowers

Have to own
house before
this is done

Have to start life audit
before finishing saving

Duration = patience

Life audit

Save hard Happy!

Take mortgage

_ Own house
Need deposit for mortgage



Plans for Borrowers

d money += 1 ‘dmoney = 1
Spend deposit

Life audit

Save hard

Take mortgage

d money -= repay rate d money += repay rate
dt dt




Sensitive bounds...

Not too late (savings get too high for mortgage constraints)

Saving and repayment

Saving rate
rate
7//I\/Iax savings
(over all)
Mi .
-~ Take mortgage N savings
(at start)

Not too early (not enough money for deposit)



Planning with Simple Temporal Networks

mortgage_end [e,°°] lifeAudit end

[mortgage,mortgage] U
y‘ i Mtience,patience]
mortgage_start lifeAudit_start
[e,°]

save start
- [e,2°]

[10,10] save_end

Take mortgage

STN can be expressed as an LP



Encoding numeric state variables in an LP

* To handle temporal-numeric interaction, we build an LP to model the numeric
behaviour of actions

* For each action A:

— add a set of variables V, denoting the values of the numeric state variables before
A.

— and a set V’. denoting the values after the discrete effects of A,
* Preconditions of the action A, can be added as constraints over V;:

money,; >0




Encoding linear continuous change in the LP

* So far, focus has been on instantaneous change: between V, and V’.
* In a continuous setting change also occurs between V’, and V,,; while remaining in a single state

time




LP Constraints

 The LPis constructed by tracking the active continuous change and combining multiple updates on
the same variable

— Initially, for each variable v, ovy= 0 — no change active
— If step, is the start of an action that increases the rate of change of v by m, ov,,; =ov, + m
— If step, is the end of such an action, ov,,; = 0v, - m




Change within a state

. Stepi+2
Step ;, increases the rate of change of vby m V.

Step ; increases the rate of change of v by n
Step ;,, decreases the rate of change of v by n

Step,

Step,;

ov;,=0 Sv,;=6v, ;+m 8v;,,=8v;+n



Encoding linear continuous change

e Constraints combining the discrete and time-dependent change can now
be written as:

V., =V +0V,,.(step,, -step))

 The LP then encodes interacting temporal-numeric consistency

money, = money’, + (saving-rate — repayment-rate).(step, — step,)




Extending the Temporal RPG

Because of continuous change we don’t know the exact values
of variables or time points of actions

We can compute bounds on these from constraints

stepow

Lpsolve computes upper and lower

step, .., - step, bounds for V,,, and step, ..,

These bounds are used to create the
first layer of the temporal RPG

step,

We relax continuous effects into
optimistic discrete effects at the starts
of actions... but reconsider this later!

step,o, = Step;+ ¢
Vnow = V’i + 6Vi+1 (Stepnow - Stepi)



Borrower a

money’; = money,
money’; > 0
save-rate = 1 money, = money’; + 1(now — stop-mortgage)

repay-rate = 0.75

money’; = money, - deposit
money’; 20
money, = money’, + 0.25 (start-audit — start-mortgage)

MONEY;  start-audit

money,

money, start-mortgage

- start-saving

money’, = money, money’, = money,
0 money’, > 0 money’, 2 0
money, = .
Yo money, = money’, — 1(start-mortgage - start-saving) money; = money’, —

money, = 0 0.25 (stop-mortgage — start-audit)




Heuristic Values

A state is assigned a value based on the relaxed plan to achieve the goals, but using makespan (in the
relaxed plan) as a tie-breaker between states

— Different schemes are possible to weight more heavily towards makespan

The makespan is estimated by building a Temporal Relaxed Planning Graph
— Layers are timestamped with the earliest time they can be reached

Process effects interact with makespan: active processes determine an earliest time when
preconditions can be satisfied, where the process contributes to achieving them

— Simple heuristic: assume all process effects available immediately
— More complex: compute earliest time process effect available
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Simple Heuristic
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Better Heuristic
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Events?

* Events and true processes are harder to handle, because they can generate happenings that are not
part of the plan

 The COLIN approach has been extended to handle them (for linear processes)
— See Coles&Coles




Closing Remarks

Hybrid planning involves reasoning about continuous physical process models alongside discrete
actions and events

Hybrid systems introduce granularity challenges: some reasoning on long horizons and some very
fine-grained

Modelling processes and events gives a powerful language with subtle complexities

Although we have some techniques for tackling these problems, solving planning problems in hybrid
systems still offers lots of open challenges




Controlling Continuous Systems in PDDL+

A planner attempts to control a system by selection of actions
— The actions are the means of control

A PDDL action generates a discrete change in a finite propositional space and, possibly, an infinite
discretised metric space

How are continuous processes controlled in PDDL models?

Eg: When refuelling the generator — how might the refuelling rate be controlled?




Discrete Control of Continuous Processes

* Could have a preset selection of flow rates

(:action setFlowRate

:parameters (?f ?f1 — flow)

:precondition (flowRate ?f)

-effect (and (not (flowRate ?f)) (flowRate ?f1)
(assign (theRateOfFlow) (valueFor ?f1))))

(:durative-action refuel

:parameters (?f — flow)

:duration (= ?duration (/ (canContent) (theRateOfFlow)))
:condition (over all (flowRate ?f))

-effect (increase (fuelLevel) (* #t (theRateOfFlow))))




Discrete Control of Continuous Processes

e Could extend this to a discrete metric control:

(:action increaseFlowRate
:parameters ()

:precondition ()

-effect (increase (theRateOfFlow) 1))

(:process refuel

:parameters ()

:precondition (and (> (theRateOfFlow) 0) (> (content) 0))

-effect (and (increase (fuelLevel) (* #t (theRateOfFlow)))
(decrease (content) (* #t (theRateOfFlow)))))




Continuous Control of Continuous Processes

* Finally, we could allow continuous control:

(-action tip (:process increaseFlowRate
:parameters () :parameters ()
:precondition () :precondition (tipping)
effect (and (not (levelling)) :effect (increase (theRateOfFlow) #t))
(tipping))
(:process decreaseFlowRate
(:action lower :parameters ()
:parameters () :precondition (and (> (theRateOfFlow) 0) (levelling))
:precondition (tipping) -effect (decrease (theRateOfFlow) #t))
-effect (and (levelling)
(not (tipping))) (:process refuel
:parameters ()
(:event levelled :precondition (and (> (theRateOfFlow) 0) (> (content) 0))
:parameters () -effect (and (increase (fuellLevel) (* #t (theRateOf,FIow))[”' g

:precondition (and (levelling)
(= (theRateOfFlow) 0))
.effect (not (levelling)))



Continuous Control of Continuous Processes

Note: Discontinuity in the second
derivative of fuel-level makes application
of non-linear optimisation approaches
much harder
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Continuous Control

Control is only through the choice of when to execute actions
Numbers are not first-class objects, so cannot be selected as parameter values
Intuitively acceptable model of analogue control
— Setting control level takes time — the level is proportional to the time spent changing it

But....

— Inconvenient for highly variable control levels that can be changed very fast relative to process
being influenced (eg accelerator setting on car)

— Seems counter-intuitive for some controls (Eg the amount of honey | scoop onto a teaspoon does
not seem to be proportional to the time | spend scooping it)




Key Observations

 PDDL+ is (by design) able to express only finitely many ground actions

* Therefore, choices are always finite, except for the choice of when to execute an action
— The timeline is continuous, real-valued

* The (deterministic) Timed Hybrid Automaton offers the same model




A Different Model

An alternative view is that actions could have metric parameters

A Discrete Time Automaton uses discrete time points corresponding to “clock ticks” and continuous
control parameters for its actions

— Thus, there is less choice about when things can be done, but more choice about what can be
done at those times

Arguably, a better model of a digital controller (which can only act on clock cycles), although
parameters are, in practice, also discretised for such a device




Yet Another View

Real processes are never precisely predictable, so it is most useful to imagine having a lower level
controller that will use a tight feedback loop to manage process behaviours

Therefore, the choice of control parameters lies in a range and the interesting question is only about
the envelope of the process controlled by that range over time

A hybrid planner is concerned with:
— selecting discrete actions and
— the timing of such actions

But it will rely on a lower level system to realise the actual control of processes within their
envelopes in order to meet constraints in the plan
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