
Lecture 4: Temporal Planning with
Continuous Processes

Mikhail Soutchanski
(Acknowledgement: Vitaliy Batusov, Giuseppe De Giacomo, Mikhail

Soutchanski, “Hybrid Temporal Situation Calculus", pages 11-13,
https://arxiv.org/abs/1807.04861

Shaun Mathew and M.Soutchanski "Heuristic Planning for Hybrid
Dynamical Systems with Constraint Logic Programming", available at

https://ceur-ws.org/Vol-3585/)

TMU, Department of Computer Science
https://www.cs.torontomu.ca/mes

July 10, 2025

Motivation and Abstract
Since situation terms are discrete, it might seem that the situation calculus
cannot represent continuous processes and their evolution in time, like an
object falling under the influence of gravity.
However, one can view a process as a fluent – falling(s) – which becomes
true at the time t when the instantaneous action startFalling(t) occurs, and
becomes false at the time t of occurrence of the instantaneous action
endFalling(t). One can then write axioms that describe the evolution in time
of the falling object quantities such as its velocity.

Before we can talk about continuous change, we need representation of time.
So far, we talked about situations and sequences of actions that imply there
is an order between actions. But we did not talk about physical time.
Suppose actions are paired with moments of time. When we solve the
planning problem, we encounter a new problem: at what moments of time the
actions have to be executed ? To schedule plan actions we can choose to
execute them as earlier as possible. This means we have to solve an
optimization problem for the moments of time.

We’ll use an external Non-Linear Programming (NLP) software to solve the
related minimum makespan optimization problem.
Assumption: each action either initiates or terminates a continuous process.
Prerequisites: basic understanding of Linear Programming at the level of an
introductory CS course on algorithms.

The Situation Tree with a Timeline.

�
��
�
��

�
��
�
�� �
��

�
��

�
��

�
�
�>

HHHHj

-
XXXXXXz

���
���

���
�:

XXXXXXXXXXXXXz

-

..

..

................................

...

...........

..

...

do(A2,do(A1,S0))do(A1,S0)

do(A3,S0)

timeline

S0

Figure: Suppose that actions A1,A3 are possible in S0, and they result in
situations do(A1,S0) and do(A3,S0). Also, shown is situation
do(A2, do(A1,S0)) that results from doing A2 in do(A1,S0). To avoid clutter
other actions and the resulting situations are not named, and branching
rightwards is omitted. Note each circle maps to a point on the timeline
representing the unique moment when situation starts. Each situation may
last for an interval from the moment it starts until next action occurs.

The sequential, temporal situation calculus.
We consider only sequencies of actions. No “concurrency" here, but see
R.Reiter’s book (Chapter 7) for details. Now: add an explicit
representation for time to the sequential situation calculus. How?

Add a new temporal argument to all instantaneous actions, denoting the
actual time at which that action occurs. Thus, startMeeting(Susan, t)
might be the instantaneous action of Susan starting a meeting at time t .
Extend the foundational axioms for the situation calculus to
accommodate time. How?

Recall the situation tree with the root in S0. Imagine this tree with the
time-line underneath. Relate action occurrences with time points since
actions are instantaneous. Recall that (s1 v s2) means that the situation
s1 precedes s2, i.e., s1 occurs earlier than s2 on the branch from S0 to s2.
Our task: write axioms relating this sequential order with temporal order.

(1) We introduce a new function symbol time : action 7→ reals. The
number time(a) denotes the time of occurrence of action a. This means
that in any application involving a particular action A(x , t), we shall need
an axiom telling us the time of the action A, e.g., time(A(x , t))= t .
Example:

∀t∀person. time(startMeeting(person, t)) = t .

Foundational axioms for time
(2) It is convenient to have a new function symbol start : situation 7→ time,
where start(s) denotes the start time of situation s. This requires the new
foundational axiom:

start(do(a, s)) = time(a).

No axiomatization for rational numbers. (We could borrow the axioms for the
dense linear order with the left end point.) The numbers in the subsequent
axioms always have the standard interpretation and handled outside of the
reasoner. This approach is related to semantic attachment [Weyhrauch] and
Constraint Logic Programming [Colmerauer,Jaffar,Maher,Stuckey,Wallace].

(3) Next, we have to reconsider the abbreviation executable(s) on situations.
Recall it means intuitively that all actions in a sequence s should be
consecutively possible. But now we do not want to consider

do(bounce(Ball ,Floor ,4),do(startMeeting(Susan,6),S0))
as a possible action sequence. To coordinate occurrences of actions with
time we suitably amend executable(s):

executable(s)
def
=∀a∀s′.do(a, s′) v s →

(
poss(a, s′) ∧ start(s′) ≤ time(a)

)
,

Now, executable(s) means that all the actions in s are possible, and
moreover, the times of those action occurrences are nondecreasing.

Notice the constraint start(s′) ≤ time(a) permits sequences in which the time
of an action a may be the same as the time start(s′) of a preceding action.

Atemporal Fluents vs Temporal Fluents
Previously, we had only atemporal fluents: they do not mention time. We will
not use them to model continuously varying physical quantities. Atemporal
fluents serve to specify the context in which continuous processes operate.

For example, the fluent Falling(b, s) holds if in situation s a ball b is in the
process of falling down and accelerating under the Earth gravity (9.81 m/s2.
For the duration of s, the position of the ball (and its derivatives) change as a
function of time according to the equations of free fall.

Fluent Falling(b, s) is directly affected by instantaneous actions drop(b, t) (ball
begins to fall at time t) and catch(b, t) (ball stops at t). But these actions only
change the context, thereby switching the continuous trajectory that the ball
can follow. Namely, a falling ball is one context and a ball at rest is another.
In a general case, a context expression is a boolean combination of
atemporal logical fluents. Numerical fluents in a context: future work.

In a general case, there are finitely many (parameterized) context types which
are pairwise mutually exclusive.
To model continuously varying physical quantities, we introduce new
functional temporal fluents with time as an argument. Values of these fluents
change with time, and not only as a direct effect of instantaneous actions.

Important: even if situation does not change, temporal fluents change with
time within situation that can last for an interval of time.

Example: Bouncing Balls
Consider a finite number of balls that can be dropped and that can elastically
bounce from the floor.
Agent actions: drop(b, time) and catch(b, time).
Natural events: bounce(b, time) - ball b hits the floor, and atPeak(b, time) -
ball is at the top point of its trajectory.

The atemporal fluent falling(b, s) means the ball b is falling down and
accelerating under the Earth gravity. The atemporal fluent flying(b, s) means
the ball b bounced, it is flying up in situation s and decelerating due to gravity.
The vertical axis is oriented downwards, i.e., if a ball is falling down, then its
speed is positive and increases. But when the ball bounces, its speed is
negative and decreases.

Consider functional temporal fluent distance(b, t , s) that represents the ball
b’s height at the moment of time t within s, and functional temporal fluent
velocity(b, t , s) that characterizes instantaneous velocity of b at the moment t
within the time interval as long as situation s lasts.

These temporal fluents describe time dependent change within situation, in
between two occurrences of the agent actions and/or the natural events.

Preconditions in Logic with Temporal Constraints
∀s∀t∀b. poss(drop(b, t), s)↔ ball(b) ∧ ¬falling(b, s) ∧ ¬flying(b, s) ∧ t ≥ start(s).

The agent action drop(b, t) is possible in s at the moment of time t , if a ball b
is neither falling, nor flying in s, and the moment of time start(s) when s
started is ≤ t . (Due to ∀t the branching factor is infinite for a planner.)
In an implementation, the temporal constraint t ≥ start(s) is added to a
special data structure for a constraint store to be evaluated later at run time
when the planner checks whether the goal logical conditions are satisfied.

∀s∀t∀b. poss(catch(b, t), s)↔ ball(b) ∧ (falling(b, s) ∨ flying(b, s)) ∧ t ≥ start(s).

∀s∀t∀b. poss(bounce(b, t), s)↔ ball(b) ∧ falling(b, s)∧
distance(b, t , s)=0 ∧ velocity(b, t , s) ≥ ε ∧ t ≥ start(s).

In an implementation, use external eplex LP solver to deal with the numerical
constraints. An action can be possible only if the constraints are feasible.

∀s∀t∀b. poss(atPeak(b, t), s)↔ ball(b) ∧ distance(b, t , s) ≥ 0 ∧
velocity(b, t , s)=0 ∧ flying(b, s) ∧ t ≥ start(s).

The last axiom is saying that a natural event atPeak(b, t) can occur in s at the
moment of time t if the ball b is flying up in s so that it reached its highest
point at which its velocity is 0, but its hight is positive. An implementation of
this axiom adds several more numerical constraints on the variables to the
constraint store.

SSAs for Atemporal Fluents
There are 3 possible contexts:

1. one where the ball is at rest,
2. one where it is falling down, and
3. one where the ball is flying up after it bounced.

(∀a∀s∀b). falling(b,do(a, s))↔ ∃t(a=drop(b, t)) ∨ ∃t(a=atPeak(b, t))∨
falling(b, s)) ∧ (¬∃t(a=catch(b, t)) ∧ ¬∃t(a=bounce(b, t))

(∀a∀s∀b). flying(b,do(a, s))↔ ∃t(a=bounce(b, t))∨
flying(b, s)) ∧ ¬∃t(a=catch(b, t)) ∧ ¬∃t(a=atPeak(b, t))

SSAs to Initialize Temporal Fluents
When actions occur, the temporal change can be either continuous, or there
might be jumps or resets in the values of temporal fluents. To describe these
transitions in temporal fluents due to actions when new situation starts, we
use auxiliary functional fluents initdist (b,d , s) and initvel (b, v , s).

Fluent initdist
∀s∀y∀a∀b. initdist (b,do(a, s))=y ↔ distance(time(a), s)=y

The height of the ball changes continuously, no matter what actions happen.

The velocity y of the ball b resets to 0, when the agent catches the ball.
When the ball bounces, its velocity jumps to the quantity with the opposite
sign. All other actions with any other balls have no effect on these physical
quantities at the moment when new situation starts.

∀s∀y∀a∀b. initvel (b,do(a, s))=y ↔ ∃y0.y0 =velocity(time(a), s)∧
∃t(a=catch(b, t) ∧ y = 0) ∨ ∃t(a=bounce(b, t) ∧ y = −y0)∨

(¬∃t(a=bounce(b, t)) ∧ ¬∃t(a=catch(b, t)) ∧ y =y0).

State Evolution Axioms (SEA) in FOL
Each SEA characterizes how temporal fluent changes with time within a
context determined by atemporal fluents. Each temporal fluent evolves from
its initial value, determined by the corresponding init atemporal fluent, at the
moment when situation starts. (The acceleration due to gravity is 9.81)

(∀s∀t∀b). distance(b, t , s)=y ↔ ∃y0.y0 = initdist (b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y = y0)∨(

falling(b, s) ∧ y = y0 −
∫ t

start(s)(9.81 · x) dx
)
∨

(
flying(b, s) ∧ y = y0 +

∫ t
start(s)(9.81 · x) dx

)
.

(∀s∀t∀b).velocity(b, t , s)=y ↔ ∃y0.y0 = initvel (b, s) ∧
(¬falling(b, s) ∧ ¬flying(b, s) ∧ y =y0) ∨(

falling(b, s) ∧ y =y0 +
∫ t

start(s) 9.81dx
)
∨

(
flying(b, s) ∧ y =y0 −

∫ t
start(s) 9.81dx

)
.

In an implementation, collect all (underlined) numerical constraints in a data
structure. Postpone evaluation until the planner checks if s is a goal state.

Since our preliminary implementation relied on the eplex library, we assumed
that the balls move along straight lines instead of physically correct quadratic
trajectories. Then, equations for both height and velocity are linear wrt time.

If an associated objective is also a linear function of its arguments, then
optimization reduces to solving the Linear Programming (LP) problem.

Foundational Axioms for Situations and Time
All the following axioms have straightforward implementation in PROLOG.
Foundational Axioms from Chapters 4 and 7 of Ray Reiter’s book [2001].
∀a1∀a2∀s1∀s2.do(a1, s1) = do(a2, s2)→ a1 =a2 ∧ s1 =s2
∀s.¬(s < S0)
∀a∀s∀s′.s < do(a, s′)↔ s v s′, where s v s′ means (s < s′ ∨ s =s′)
∀P.(P(S0) ∧ ∀a∀s(P(s)→ P(do(a, s))))→ ∀sP(s)
∀a, s′.do(a, s′) v s → (poss(a, s′) ∧ start(s′) ≤ time(a))∧

∀a′
(
poss(a′, s) ∧ natural(a′) ∧ a 6= a′ → time(a′) ≤ time(a)

)

∀a. start(do(a, s))= time(a) start(S0) = 0
Domain Specific Axioms for the Bouncing Ball Example
∀t ,∀b.time(drop(b, t))= t ∀t ,∀b.time(catch(b, t))= t
∀t ,∀b.time(bounce(b, t))= t ∀t ,∀b.time(atPeak(b, t))= t .
∀t∀b.natural(atPeak(b, t)) ∀t∀b.natural(bounce(b, t)).
∀t∀b.agent(drop(b, t)) ∀t∀b.agent(catch(b, t)).

Initial Theory
ball(b1) ball(b2)
velocity(b1,0,S0) = 0 velocity(b2,0,S0) = 0
distance(b1,0,S0) = 100 distance(b2,0,S0) = 150

In a PROLOG program, functional fluent distance(b, t , s) is implemented as predicate
dist(b, d , t , s), and functional fluent velocity(b, t , s) is implemented as predicate
vel(b, v , t , s). Program is available at https://www.cs.torontomu.ca/mes/publications/

Planning Problem for the Two Balls
Objective: find a plan that satisfies a goal in minimal time wrt constraints.

Find the earliest moment of time such that each ball reached its peak at least
once, both balls are falling, the velocities of the two balls are equal, and their
heights are also equal. Minimization wrt constraints collected so far.

Checking these goal conditions reduces to the linear programming problem
that can be solved using an external eplex LP solver interfaced with our
program. Solved this planning instance with an uninformed iterative
deepening depth-first search (DFS) planner.

The program found a correct 8 step plan in 0.18 seconds: [drop(b2, 0),
bounce(b2, 30.581039755351682), drop(b1, 50.9683995922528), atPeak(b2,
61.162079510703364), catch(b2, 71.35575942915392), bounce(b1,
71.35575942915392), drop(b2, 91.743119266055047), atPeak(b1,
91.743119266055047)].

Notice that this plan must be clever since the two balls had different initial
heights: dist(b1,100,0,[]). dist(b2,150,0,[]).
But in the goal state their heights and velocities must be equal.

In an implementation, precondition axioms for nature’s actions appear before
preconditions for agent’s actions. In a general case, need extra efforts to
make sure nature’s actions are executed as soon as they are possible.

Temporal Change Axiom (TCA) in a General Case
Our starting point is a temporal change axiom (TCA) which describes the
evolution of a particular temporal fluent due to the passage of time in a
particular context of an arbitrary situation: Similar to vel(b, t , s).

γ(x̄ , s) ∧ δ(x̄ , y , t , s)→ f (x̄ , t , s)=y , (1)
where t , s, x̄ , y are variables and γ(x̄ , s), δ(x̄ , y , t , s) are formulas uniform in
s. We call γ(x̄ , s) the context as it specifies the condition under which formula
δ(x̄ , y , t , s) provides (may be implicitly) the value y to fluent f at time t .

γ(x̄ , s)→ ∃y δ(x̄ , y , t , s). (2)
For each TCA, we require that whatever the circumstance, the axiom supplies
a value for the quantity modelled by f if its context is satisfied.
A finite set of k temporal change axioms for fluent f can be equivalently
expressed as follows, where Φ(x̄ , y , t , s) is

∨
1≤i≤k (γi (x̄ , s) ∧ δi (x̄ , y , t , s)).

Φ(x̄ , y , t , s)→ f (x̄ , t , s)=y (3)

Φ(x̄ , y , t , s) ∧ Φ(x̄ , y ′, t , s)→ y =y ′. (4)
Condition (4) guarantees the consistency of the axiom (3) by preventing a
continuous quantity from having more than one value at any moment of time.
With condition (4), all contexts in the given set of TCA are pairwise
mutually exclusive wrt a BAT D. Note that contexts γ(x̄ , s) are
time-independent.

Deriving State Evolution Axioms
Having combined all laws which govern the evolution of f with time into a
single axiom (3), we can make a causal completeness assumption
(Explanation Closure): there are no other conditions under which the value of
f can change in s from its initial value at start(s) as a function of t , i.e.,

f (x̄ , t , s) 6= f (x̄ , start(s), s)→ ∃y Φ(x̄ , y , t , s). (5)

Theorem
Let for each formula of the form (1) the background theory D entail
∀(γ(x̄ , s)→ ∃y δ(x̄ , y , t , s)). Then the conjunction of axioms (1), (3), (4), (5) is
logically equivalent to

f (x̄ , t , s)=y ↔ [Φ(x̄ , y , t , s) ∨
y = f (x̄ , start(s), s) ∧ ¬Ψ(x̄ , y , t , s)],

(6)

where Ψ(x̄ , s) denotes
∨

1≤i≤k γi (x̄ , s).

We call the formula (6) a state evolution axiom (SEA) for the fluent f . Note
what the SEA says: f evolves with time during s according to some law
whose context is realized in s or stays constant if no context is realized.

See proof in the paper Vitaliy Batusov, Giuseppe De Giacomo, Mikhail
Soutchanski, “Hybrid Temporal Situation Calculus", pages 11-13,
https://arxiv.org/abs/1807.04861

ODEs in Temporal Change Axioms
γ(x̄ , s) ∧ δ(x̄ , y , t , s)→ f (x̄ , t , s)=y /*Why no condition (t > start(s)) on LHS?*/

Let us discuss more specifically what can be inside the formula δ.
Science, engineering and PDDL+ describe continuous effects in dynamical
systems in terms of an explicit ordinary differential equation (ODE) of the form

df (x̄ , t , s)

dt
= RHS(t , f)

where RHS(t , f) is a continuously differentiable (or more generally, a Lipschitz
continuous function). An initial value f (x̄ , t0, s) is implicitly given, and together
with the ODE it defines the initial value problem that has a unique solution.

To avoid introducing additional fluents for derivatives, we can encode process
effects using the equivalent integral form f (x̄ , t , s) =

∫ t
t0

RHS(τ, f) dτ + f (t0),
where we use notation t0 instead of start(s). We require that all FOL
structures interpret the definite integral symbol in the standard way.

LetM be an arbitrary situation calculus structure, σ be an object assignment,
h(x̄ , t , s) a SC term of sort R whose free variables are among x̄ , t , s, and let
τ1, τ2 be terms of sort R. Then we require that

(∫ τ2

τ1

h(x̄ , t , s) dt
)
M

[σ] =

∫ τM
2 [σ]

τM
1 [σ]

hM(x̄M[σ], t , sM[σ]) dt .

The modeller must ensure that hM(x̄M[σ], t , sM[σ]) is a continuous
real-valued function defined on the interval [τM1 [σ], τM2 [σ]].

For several related temporal fluents f1, f2, . . . , fn assume a system of ODEs, in
a context γ(x̄ , s) where all these fluents change in s simultaneously.

Temporal Basic Action Theory (BAT)
The SEA for a temporal fluent f does not completely specify the behaviour of
f because it talks only about change within s. Need a SSA describing how the
initial value of f changes (or does not change) when an action is performed.

How to relate f (x̄ , time(a),do(a, s)) with f (x̄ , time(a), s)? Enforce “=" or not?
Transition is not always continuous, e.g., object’s acceleration changes from 0
to −9.8m/s2 when an object is dropped. Need ability to model action-induced
discontinuous jumps in the values of the continuously varying quantities.

For each temporal functional fluent f (x̄ , t , s), we introduce an auxiliary
atemporal functional fluent finit(x̄ , s) whose value in s represents the value of
the temporal fluent f in s at the time instant start(s). Add new SSA for finit:

finit(x̄ ,do(a, s))=y ↔ ∃y ′.f (x̄ , time(a), s)=y ′ ∧ Init(x̄ , y ′, y ,a, s), (7)

where Init(x̄ , y ′, y ,a, s) is a formula uniform in s whose purpose is to describe
how the initial value y of finit in do(a, s) relates to the temporal fluent f value
y ′ at the same time instant in s (i.e., prior to execution of action a).

To establish the relationship between temporal fluents and their atemporal
init-counterparts, we require Dss ∧ Dse |= f (x̄ , start(s), s)= finit(x̄ , s).

A temporal basic action theory is D=Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 ∪ Dse such
that Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 constitutes a BAT, and Dse is a set of state
evolution axioms.

Satisfiability of a Temporal BAT
A set Dse of SEA is stratified iff there are no temporal fluents f1, . . . , fn such
that f1 � f2 � . . . � fn � f1 where f � f ′ holds iff there is a SEA in Dse where f
appears on the left-hand side and f ′ on the right-hand side. A temporal BAT
is stratified iff its Dse is.
Example: distance varies with time and depends on velocity that in turn
depends on acceleration.

Similarly to Reiter’s BATs, temporal BATs have a relative satisfiability property.

Theorem
A stratified temporal BAT D is satisfiable iff Duna ∪ DS0 is satisfiable.
The proof extends that of Theorem 1 in [Pirri&Reiter,JACM,1999]. This
important result provides means of checking satisfiability of the theory without
having to reason about situations using the 2nd-order induction axiom of Σ.

There are simple practical examples of temporal BAT such that their temporal
fluents are not stratified. However, it turns out one can prove for them as well
that such temporal BATs have a model under reasonable conditions.

Example 2: a Water Reservoir
inflow —–−→ | water | max volume = tank capacity is C
rate Rin | volume | min volume = 0

| v | —-−→ outflow rate Rout

Consider a water reservoir with an adjustable inflow and an adjustable
outflow. Let the temporal functional fluent vol(t , s) represent the volume of
water in the tank at time t . The maximum capacity of the tank is C. Let Rin
and Rout be inflow and outflow rates (volume per unit time), which are for
simplicity are constant, i.e., rates are time-invariant.

Let actions startIn(t), endIn(t) represent opening/closing of the inflow valve.
These actions initiate/terminate the process represented as the fluent
inflow(s). Let actions startOut(t), endOut(t) represent opening/closing of the
outflow valve. These actions initiate/terminate the process outflow(s).

Poss(startIn(t), s)↔ ¬inflow(s) ∧ t ≥ start(s) ∧ (vol(t , s) < C).
Poss(endIn(t), s)↔ inflow(s) ∧ t ≥ start(s).
Poss(startOut(t), s)↔ ¬outflow(s) ∧ t ≥ start(s) ∧ (vol(t , s) > 0).
Poss(endOut(t), s)↔ outflow(s) ∧ t ≥ start(s).

inflow(do(a, s))↔ ∃t(a = startIn(t)) ∨ inflow(s) ∧ ¬∃t(a = endIn(t))
outflow(do(a, s))↔ ∃t(a = startOut(t)) ∨ outflow(s) ∧ ¬∃t(a = endOut(t))

Reservoir: a State Evolution Axiom (SEA) for Volume
An obvious initial value SSA asserts the continuity of volume (no leaks):

volinit(do(a, s))=v ↔ vol(time(a), s)=v .

To write a State Evolution Axiom for the fluent vol(t , s) consider all possible
combinations of inflow and outflow: either the inflow valve is open while
outflow is present or not, or the inflow valve is closed while the outflow valve
can be open or closed. Each combination is a separate context. For each
context, vol(t , s) evolves according to a different function of flow rates and
time. Inflow cannot exceed capacity C, and outflow cannot yield vol(t , s) < 0.

vol(t , s)=v ↔ ∃v0∃t0
(

volinit(s)=v0 ∧ start(s)= t0 ∧(
inflow(s) ∧ ¬outflow(s) ∧ v =min{v0 + Rin · (t−t0),C} ∨

inflow(s) ∧ outflow(s) ∧ v =max{min{v0 + Rin · (t−t0)− Rout · (t−t0),C}, 0} ∨
¬inflow(s) ∧ outflow(s) ∧ v =max{v0 − Rout · (t−t0),0} ∨
¬inflow(s) ∧ ¬outflow(s) ∧ v =v0

))
.

The expression ¬inflow(s)∧¬outflow(s) on the last line of the SEA is logically
equivalent to the negated disjunction of the three contexts on preceding lines.
Notice that in this axiom there are four different pairwise exclusive contexts,
and for each context there is its own function describing how the fluent
evolves with time.

