
Lecture 5: NEAT Planner Using Hybrid
Temporal Situation Calculus

Mikhail Soutchanski
(Acknowledgement: joint work with Nikola Kadovic and Shaun Mathew)

July 10, 2025

Prerequisites: basics of Non-Linear Porgramming (NLP) at the level
of an undergraduate course on multivariable calculus.

PDDL 2.1 (2003) and PDDL+ (2006)
PDDL= the Planning Domain Definition Language: to standardize input

Maria Fox and Derek Long, “PDDL 2.1: An Extension to PDDL for
Expressing Temporal Planning Domains" 2003, JAIR, v.20, p.61–124
PDDL+: Maria Fox and Derek Long, “Modelling Mixed Discrete
Continuous Domains for Planning", JAIR, 2006, vol 27, p.235–297.
(Semantics: hybrid automata; fluents and actions are instantiated.)

I PDDL 2.1 and PDDL+ are languages developed to describe
temporal planning problems in a domain agnostic way.

I Consists of the following constructs:
I Objects e.g. (gen1 - solarGenerator)
I (Agent) Actions e.g. enableGenerator, disableGenerator
I Durative Actions e.g. rampUp, rampDown, generatePower
I Predicates e.g. IsGenerating, IsEnabled
I Functions e.g. PowerGenerated, RunningCost
I (Natural) Events e.g. powerFailure, overheat
I Processes e.g. running

Vitaliy Batusov and Mikhail Soutchanski, “A Logical Semantics for
PDDL+", ICAPS, 2019, pages 40-48. (It is based on the HTSC.)

PDDL+ Planners
Planner Discretize Heuristic Heur. Type Non-Linear?
CASP(2016) Yes No - Yes
COLIN(2012) No Yes Independent No*
DiNo(2016) Yes Yes Independent Yes
ENHSP(2017) Yes Yes Independent Yes
OPTIC++(2019) No Yes Independent Yes**
SMTPlan+(2016) No No - Yes***
UPMurphi(2010) Yes No - Yes
TM-LPSAT(2005) No No - No

* COLIN can only solve PDDL 2.1 problems (no contin. processes)
** OPTIC++ can only handle linear equations in preconditions
*** SMTPlan+ can only handle polynomial change

Daniel Bryce, Sicun Gao et al, “SMT-Based Nonlinear PDDL+ Planning", 29th
AAAI, 2015, p.3247-53. Reduce PDDL+ planning to reachability problems of
hybrid automata, which are encoded and solved as FOL formulas over the
reals. Use the δ-complete decision procedure over the reals (dReal solver).

M.Balduccini et al “CASP solutions for planning in hybrid domains", Theory
and Practice of Logic Programming, 2017, Vol 17, N4, p.591-633 (ASP)

Compare with the best state-of-the-art planners: DiNO, ENHSP, SMTPlan+.

Experimental Evaluation
We evaluated our planner, NEAT and the existing state-of-the-art
non-linear temporal numeric planners for which source code is readily
available: DiNo , ENHSP (2020 version) and SMTPlan+.

Both DiNo and ENHSP are model-based planners that discretize time
and reduce the temporal numeric planning problem to a numeric planning
problem (without time). Both use different heuristics.

SMTPlan+ reduces the temporal numeric planning problem to a
Satisfiability Modulo Theories (SMT) problem (Z3 solver), and it does not
discretize time.

There are a few other PDDL+ planners such as dReach, CASP,
UPMurphi, OPTIC+, ScottyActivity, but either they were previously
discussed and compared, or their source code was not available.

Each planner is given 30min per instance and 1 GB of memory.

Metrics for comparison:
(1) execution time (in seconds): how long the planner takes to find a plan,
(2) coverage: how many instances were successfully solved
(3) plan duration (in time units) which is a measure of plan optimality

Our NEAT (Non-linEAr Temporal) Planner
All PDDL+ planners are based on grounding. They instantiate all actions
schemas with constants from the planning problem instance. Most build a
grounded transition system before search starts.

Our NEAT (Non-linEAr Temporal) Planner is a lifted forward search planner. It
works directly with action schemas, i.e., no grounding in advance.

No discretization of time. The moments of physical time when actions are
executed remain symbolic until the planner computes a schedule for the
actions in a plan. Any nonlinear change can be handled, in principle. Calls an
external numerical solver for non-linear programming.

The NEAT planner does lifted greedy best-first search (GBFS). Heuristic
search is guided by a domain-independent heuristic function.

Input: automatically translated from PDDL+ benchmarks, and then manually
edited to produce a temporal BAT in the HTSC (can be fully automated).
Output: a time-stamped sequence of agent acts; may include natural actions.

PDDL+ benchmarks are available at https://github.com/KCL-Planning/DiNo
Descriptions: http://kcl-planning.github.io/DiNo/benchmarks
http://kcl-planning.github.io/SMTPlan/benchmarks

Methodology: Planning in Logic + External NLP Solver
I Use a deductive regression-based planner that does heuristic

planning over the situation tree (state space is implicit)
I Numerical constraints are not handled by our planner directly.

Collect all the encountered numerical constraints in a data
structure. Pass them + Objective to external Non-Linear
Programming solver (NLP).

I Use state-of-the-art NLP solvers KNITRO (Artelys) and IPOPT.
I Our domain-independent heuristic finds the most promising

action by relaxing and approximating the underlying continuous
processes. To evaluate an action, heuristic has two stages.

I (a) Let action manifest its effects ("beneficial" or "harmful")
through the processes initiated/terminated by the action.
(b) Imagine a convex combination of all processes runs until
numerical goal conditions are satisfied. Determine how much
time it takes. This is relaxation of what can happen in reality.

Limitations of our current implementation:
I translation from PDDL+ to HTSC is manual
I #t is not implemented: we encode a solution to ODE manually in the

state evolution axioms.
I overall global constraints on durative actions/processes are verified after

a plan has been computed.

Constraints Manager (by Nikola Kadovic)
ConstraintsManager (abbreviated CM) is a library providing a software
interface between a planner written in PROLOG and an external non-linear
numerical constraint solver. CM is written in C++ and Prolog. It allows the
user to encode and solve non-linear programming (NLP) problems of the
following structure:

min f (x̄) over x̄ ∈ Rn such that
ḡL ≤ g(x̄) ≤ ḡU

x̄L ≤ x̄ ≤ x̄U ,
f (x̄) : Rn 7→ R is an objective function, g(x̄) : Rn 7→ Rm is constrained to be
between the vectors ḡL and ḡU , and x̄ must be between the vectors x̄L, x̄U .

In CM, the objective function f (x̄) will always be an expression, not a
constraint. Expressions are intended to be symbolic (involving variables).
They can be created from other expressions, and can be included in
constraints. All un-instantiated variables inside expressions will be eventually
assigned a final value once the NLP has been solved.

Constraints make up ḡ. When we "add" constraints, we are building upon a
previous list of generated constraints, i.e. increasing the vector output of g.
The set of constraints is feasible, if there is at least one point x̄ ∈ Rn that
satisfies all constraints.

CM communicates with AMPL
Once the problem has been built completely, it can be solved by using
‘solve/3‘: solve(C,min(F),MinOptFuncValue), where C is a list of
constraints, and F is an expression.

To evaluate ‘solve‘, CM will invoke an external NLP solver with the problem.
If an NLP is feasible, and a solution is found, then ‘MinOptFuncValue‘ will be
unified with final value of F at the convergence point. If we are trying to
minimize F , this will either be a local minimum or global minimum, depending
on if the problem is convex or not.

CM communicates with external solvers through an intermediate software
package called AMPL ("A Mathematical Programming Language”). CM
produces a string that is passed to AMPL that does pre-processing and then
sends its output to a specified NLP solver.

In our experimental results, we used the Euler method to approximate a
temporal function, where the unit interval of time was divided into 8
sub-intervals.

All included results are preliminary: from a November 2024 version of the
planner. They are subject to change. In particular, our heuristic was
supplemented by a focal search based on minimization of the number of
actions in a plan; in focal search, the meta-parameter was 0.3

Linear Generator domain
Run a generator for a specified amount of time refueling when
necessary with auxiliary tanks.
I Actions: generateBegin(gen, s),generateEnd(gen, s),

refuelBegin(gen, tank , s), refuelEnd(gen, tank , s)

I Static Facts: capacity(gen), tank(tname),generator(gname)

I Processes: generate(gen), refuel(gen, tank)

I Fluents: generatorRan(gen, s),available(tank , s)

I Temporal Fluents: fuelLevel(gen, time, s)

Instance with 2 refueling tanks: initFuelLevel(gen,0,S0) is 960, total
capacity is 1000, there are tanks1 and tank2 with 20 units of fuel.
While generating gen spends 1 fuel with rate 1, and refueling rate is 2

In the different planning instances, the number of refueling tanks vary
from 1 to 50, the initial fuel level in the generator can vary across
instances accordingly, but the flow rate is constant.

This is not a time minimization problem, since the task is to run a
generator for a fixed (1000 units) time. The main challenge:
symmetry between the refueling tanks.

Linear Generator: Compare Execution Time

CM with Knitro solved only 40 instances within allocated time.
CM with IPopt solved 44 instances within allocated time.
SMTPlan solved only 15 instances.
DiNo and ENHSP solved all 50 instances fast thanks to their
symmetry-breaking heuristics.

Linear Generator: OPTIC and OPTIC++

Copy/Paste from E. Denenberg and A. Coles. “Mixed Discrete
Continuous Non-Linear Planning through Piecewise Linear
Approximation”. In: Proceedings of the 29th International Conference
on Automated Planning and Scheduling, 2019, pp. 137–145. URL:
https://ojs.aaai.org/index.php/ICAPS/article/view/3469 (cit. on p. 30).

The source code of OPTIC++ was not publicly available and for this
reason we could not use it for comparison.

Car domain
Drive a car from a standstill for a certain specified distance and arrive
with 0 velocity as quickly as possible within the constraints.
I Actions: accelerate(time), decelerate(time), stop(time)

I Natural Actions: movingBegin(time), movingEnd(time),
engineExplode(t), windResistBegin(t), windResistEnd(t)

I Numerical Fluent: acceleration(x , s) subject to an upper and
lower bounds: its value x determines a context.

I Fluents: engineBlown(s), stopped(s), running(s)

I Temporal Fluents: velocity(time, s),distance(time, s)

In all planning instances, the goal is to travel as soon as possible at
least 30 units distance and stop with 0 velocity within 50 units of time
allotted to the car. Wind resistance happens at velocity 50. Engine
explodes at velocity 100.

In the different planning instances, there are different upper and down
limits on acceleration, and deceleration. For example, in the instance
7, the limits are +7 and -7, accordingly, but in the instance 25 the
limits are +25 and -25. Everything else is the same.

Linear Car (no wind): Execution Time

All planners solved all 50 instances: SMTPlan takes less than
0.07sec, ENHSP takes around 0.3sec on all instances. NEAT time
varies from 1 to 10sec (CM with Knitro), and from about 3 to 7sec for
CM with IPopt. The computed plans are non-optimal: 2 accelerate
actions followed by 2 decelerate actions.

Nonlinear Car (with Wind): Execution Time

SMTPlan could not solve any instances, since it works only with
polynomial functions of time; in this problem velocity changes log().
Other planners solved all 50 instances. ENHSP takes about 0.3sec.
NEAT: CM with Knitro time varies from about 1 to 10sec, CM with
IPopt time varies from 3sec to about 10sec. Execution time of DiNo
varies wildly as shown.

Solar Rover domain
A rover needs to charge its internal batteries in order to transmit
some data
I Actions: switchGenBatteryOn(genBattery , t),

useBatteryBegin(b, t), useBatteryEnd(b, t), sendData(t) –
needs 500 units of energy

I Natural Actions: sunshine(t) - provides 400 units
I Static Fact: sunexposure(sunriseTime), powerlimit(1000)

I Temporal Fluents: roverEnergy(s)

I Fluents: on(battery , s), off (battery , s), gbon(genBattery , s),
gboff (genBattery , s), roverSafe(s), dataSent(s), night(s),
usingBattery(b, s)

I Temporal Fluents: SoC(battery)

SoC= “state of charge" (for a battery). Initially, rover has 0 energy,
there are 3 batteries with SoC 40, 80, 100, and a general battery with
SoC=100. Time when sunshine event happens varies across the
instances, e.g., in the 1st it is at 50, in the 40th instance it is at 2000,
etc. Goal: get enough power to send data as soon as possible.

Non-linear Solar Rover

Identical to the linear version, but now there is a charging process
that can begin or end. Its purpose is to increase the value of the
roverEnergy temporal fluent by some non-linear function. Below, we
list only the new additions to the domain.
I Actions: chargingBegin(Time), chargingEnd(Time)

I Process: charging
I Temporal Fluents: roverEnergy(time, s)

Non-Linear Solar Rover: Execution Time

ENHSP and SMTPlan could not compute any plans.
DiNo: time increased linearly from about 11sec to 190sec.
NEAT: CM with IPopt time varied a lot from 16sec to about 97sec. CM
with Knitro did not work. AMPLEX with Knitro: time varies between 4
and 11 sec. AMPLEX is described in S.Mathew, M.Soutchanski “Heuristic
Planning for Hybrid Dynamical Systems with Constraint Logic Programming",
Italian Wsh on Planning, IPS-2023, https://ceur-ws.org/Vol-3585/

1D Powered Descent
How to land softly on the surface of a planet? The spacecraft falls down and
gains velocity due to the force of gravity. It can begin thrusting process by
firing its engines against gravity to decrease velocity. The duration of thrust
process is flexible.The change of distance due to thrust is calculated as
−Isp ·G · (t−t0)− Isp ·G · (1/q) · (m(t0)− q · (t−t0))·

log
(
(m(t0)− q · (t−t0))/m(t0)

)

where Isp is the specific impulse of the thruster, q is a constant, G is the
acceleration due to gravity, m(t0) is the initial mass of the spacecraft before
firing thrusters, t0 - time when thrust (fall) begins, t - current time.
I Actions: fallBegin(t), fallEnd(t) thrustBegin(t), thrustEnd(t), land(t).
I Natural Action: crash(t)
I Temporal Fluents: mass, velocity, distance
I Fluents: crashed(s), inProgress(s), landed(s)

land is possible if the final velocity and distance from the surface are within
the safe bounds, otherwise crash happens.
For a falling body, distance changes according to Newton’s equation
d(t0) + v(t0) · (t−t0) + 0.5 ·G · (t−t0)2.
Velocity of a falling body with active thrust changes as
v(t0) + G · (t−t0)− Isp ·G · log

(
(m(t0)− q · (t−t0))/m(t0)

)

In the instances, only the values of final distance vary from 100 to 2000.

1D-Powered Descent: Execution Time

ENHSP and SMTPlan could not compute any plans.
DiNo solved only 19 instances: time varies between 12 and 99sec,
but Instance 19 takes about 1770 sec.
NEAT: CM with Knitro solved 33 instances: from 0.3sec to 250sec,
the last instance 32 takes 1500 sec. CM with Ipopt solved 35: time
varies between 0.9 and 2.2 sec. AMPLEX with Knitro solved 30
instances (could not solve instances 16-18,32): time was around 0.4s

Conclusion and Future Work
Our NEAT planner demonstrates performance that is comparable with
the state-of-the-art planners DiNo, SMTPlan+, ENHSP across several
realistic benchmarks for hybrid systems.

Future Work.
I Consider a broader class of hybrid systems where actions can

change logical fluents only, but have no effect on processes.
I Optimize iteratively constructed NLP: consecutive NLP problems

are closely related
I More informative heuristic for domain-independent planning in

hybrid systems
I Prove that under certain conditions our planner is sound.
I Find when NEAT planner can work correctly with natural actions
I Experimental evaluation on the realistic domains where the

objects can be created/destroyed at run time.
I Explore if NEAT can be useful to solve practical optimization

problems for hybrid systems.

A few Topics for Future Research: Part 1
In the HTSC, the mutually exclusive contexts include only truth-valued
(parameterized) fluents. But it would be interesting to consider an extension
of the HTSC where the contexts may include numerical fluents as well. This
would require significant revision of the State Evolution Axioms.

So far, reasoning in the HTSC is done using regression only. Is it possible to
define progression for temporal BATs ? For atemporal fluents, this can be
done similarly to progression in local effect BATs. For temporal fluents within
situation this likely can be done using Picard’s method for ODEs. The
question is how to merge these methods to compute progression in HTSC.

Integration of Task and Motion Planning (TAMP) is a large and practically
important research area with focus on probabilistic algorithms. However,
there is a lack of conceptual understanding of TAMP. The question is how the
TAMP problems can be formulated within the HTSC in a general form. The
following papers are good starting points.
Erion Plaku, Gregory D. Hager: “Sampling-Based Motion and Symbolic Action
Planning with Geometric and Differential Constraints". ICRA 2010: pages 5002-5008.
Marc Toussaint: “Logic-Geometric Programming: An Optimization-Based Approach to
Combined Task and Motion Planning". IJCAI 2015: p.1930-1936.

A few Topics for Future Research: Part 2
The most popular approach to solving planning and control problems in the
hybrid systems is Mixed Integer Non-Linear Programming (MI-NLP). There is
a huge library MINLPlib that accumulates the realistic benchmarks solved
using traditional techniques from Operation Research. See details at
http://minlplib.org/applications.html
https://www.minlp.org/index.php

It would be interesting to demonstrate that some of those planning
benchmarks can be formulated in the HTSC. This research may encounter
new features and extensions that have to be added to HTSC. Caution: not all
benchmarks in MINLPlib are planning related, and among those that are
related, not all of them model a hybrid system.

The important research question is whether the flexibility and generality of
modelling mixed discrete-continuous domains in HTSC can also provide the
benefits in terms of solving the related optimization problems more efficiently.

References
Marcello Balduccini, Daniele Magazzeni, Marco Maratea, Emily Leblanc: “CASP
solutions for planning in hybrid domains". Theory Pract. Log. Program. 2017, 17(4):
pages 591-633

Vitaliy Batusov and Mikhail Soutchanski: “A Logical Semantics for PDDL+", ICAPS,
2019, pages 40-48.

A.Ben-Tal and A. Nemirovski: “Optimization III: Convex Analysis, NLP Theory and
Algorithms", www2.isye.gatech.edu/~nemirovs/OPTIIILN2024Spring.pdf

Michael Cashmore, Daniele Magazzeni, Parisa Zehtabi: “Planning for Hybrid Systems
via Satisfiability Modulo Theories". JAIR, 2020, v.67: 235-283 (SMTPlan+)

E. Fernández-González, Brian C. Williams, Erez Karpas: “ScottyActivity: Mixed
Discrete-Continuous Planning with Convex Optimization". JAIR, v.62: 579-664 (2018)

Maria Fox and Derek Long, “PDDL 2.1: An Extension to PDDL for Expressing
Temporal Planning Domains" 2003, JAIR, v.20, p.61–124

Maria Fox and Derek Long: “Modelling Mixed Discrete Continuous Domains for
Planning", JAIR, 2006, vol 27, p.235–297. (Introduction to PDDL+)

Shaun Mathew and M.Soutchanski: “Heuristic Planning for Hybrid Dynamical Systems
with Constraint Logic Programming", https://ceur-ws.org/Vol-3585/

Yurii Nesterov: “Lectures on Convex Optimization", 2nd edition, Springer, 2018.
(Chapter 1 provides intro to general optimization problems and NLP).

Wiktor Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, Fabio Mercorio:
“Heuristic Planning for PDDL+ Domains". IJCAI 2016: 3213-3219 (DiNo)

Enrico Scala, Patrik Haslum, Daniele Magazzeni, Sylvie Thiébaux: “Landmarks for
Numeric Planning Problems". IJCAI 2017: 4384-4390 (ENHSP)

