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From First Order Logic to Actions and Change
In this tutorial, we’ll not talk about first order logic (FOL) in general or about
reasoning with arbitrary FOL formulas.

Instead, we focus on a particular class of FOL axioms that represent discrete
change: the situation calculus. This case is sufficiently large, it is interesting
from the perspective of applications.

By shifting our focus from arbitrary FOL formulas, to reasoning about discrete
change we make a step towards discussion how to reason about discrete and
continuous change efficiently, and how to develop computationally efficient
implementations.

Our next step will be how to solve planning problems efficiently without
making strong assumptions such as the domain closure assumption, when
the names of all objects are explicitly given in advance. Also, how to plan
when the action parameters vary over an infinite continuous space ?

But before we get to planning, we have to see how to compute individual
effects efficiently and how to compute what does not change after doing an
action.

Language of the situation calculus (John McCarthy)
A first order language for representing dynamically changing worlds; all
changes are the result of named actions. Actions are denoted by function
symbols. Actions may be parameterized, e.g. the term move(x , y) might
stand for the action of moving object x on object y .

A possible world history, which is simply a sequence of actions, is
represented by a first order term called a situation.

S0 denotes the initial situation, where no actions have yet occurred. do(a, s)
denotes the successor situation to s resulting from performing the action a.

Example: do(move(B1,B2), s) denotes that situation resulting from placing B1
on B2 when the world is in situation s.

Fluents are those relations (or functions) whose truth values may vary from
situation to situation. They are denoted by predicate (or function) symbols
taking a situation term as one of their arguments.
(John McCarthy borrowed the word “fluent" from Isaac Newton.)
Example. In a world, in which it is possible to paint objects, we might have a
functional fluent colour(x , s) that denotes the colour of object x when the
world is in situation s. For example, colour(B9,S0)=Blue means that colour
of block B9 is Blue in the initial situation S0.
Notation. Use the dot “." to indicate the scope of quantifier: Qx .F means Q,
which is either ∀ or ∃ over x , applies everywhere in F .

The Blocks World (BW)
We consider mostly relational fluents in the beginning of this tutorial.

Fluents: ontable(x , s) means x is on the table, clear(x , s) means there is
nothing on the top of x , on(x , y , s) means block x is on the top of block y .
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A basic version of BW includes the following 2 different actions:
move(x , y): move block x from its current position to the top of block y
moveToTable(x): move block x from its current position to the table.

Later, we’ll consider a different set of actions for BW.



Preconditions: the qualification problem
Actions have preconditions: necessary conditions which a world situation
must satisfy if the action can be performed in this situation. We write them as
formulas using the predicate symbol Poss(a, s) or poss(a, s).

Example. If it is possible for a robot to move an object x to the table in
situation s, then there is nothing on the top of x in s, and x is not already on
the table in situation s:
∀s∀x .poss(moveToTable(x), s)→ clear(x , s) ∧ ¬ontable(x).

Example. Whenever it is possible for a robot to move an object x on top of y
in situation s, then both objects must be clear, and they must be distinct:
∀s∀x∀y .poss(move(x , y), s)→ clear(x , s) ∧ clear(y , s) ∧ x 6= y .

Can we infer when a moveToTable or a move is possible?

What about reversing the implication?
∀s∀x .clear(x , s) ∧ ¬ontable(x)→ poss(moveToTable(x), s).
∀s∀x∀y .clear(x , s) ∧ clear(y , s) ∧ x 6= y → poss(move(x , y), s).

Our approach: ignore all the “minor" qualifications and assume that all
preconditions are explicitly specified. For each action A(~x), we have an axiom

∀~x ∀s. poss(A(~x), s)↔ ΠA(~x , s),
where ΠA(~x , s) is a first order formula with free variables ~x , s which does not
mention do. We shall call these action precondition axioms.

Preconditions as Conjunctive Queries in DBs
Usually, the RHS ΠA(~x , s) is a conjunctive query with ~x as distinguished
variables, but sometimes negations and numerical built-in are allowed.

An extended conjunctive query (ECQ) is of the form ∃~xφ(~x , ~y), where φ is a
conjunction of fluents and safe disequalities 6=, that is, disequalities between
variables or variables and constants such that each variable has to appear in
at least one fluent.

The problem of evaluating ECQ over a finite relational database is
NP-complete.

For this reason, in Automated Planning, there is an interest to an important
class of conjunctive queries that have polynomial-time combined complexity:
the acyclic conjunctive queries.

The connections between Reasoning About Actions (this course) and Data
Bases are very important for developing efficient implementations. They are
also important conceptually, if one considers data bases with incomplete
information.

Effect axioms
World dynamics are specified by effect axioms which specify the effect of a
given action on the truth value of a given fluent.

The effect of a robot moving an object x from object y to the table on the
relational fluent clear(y , s) /* |x| */

∀x∀y∀s. on(x , y , s)→ clear(y ,do(moveToTable(x), s)). /* |y| */
This is a positive effect axiom (PEA) since it asserts when a fluent becomes
true after doing an action.

A robot moving an object x on top of an object y causes y not to be clear:
∀x∀y∀s. ¬clear(y ,do(move(x , y), s)).

This is a negative effect axiom (NEA) since it asserts when a fluent becomes
false after doing an action.

The previous two examples deal with a relational fluent. However, we could
write effect axioms also for functional fluents. Skip to simplify.
For functional fluents, we do not distinguish between positive and negative
effect axioms. This distinction applies only to axioms for relational fluents.
Functional fluents: see R.Reiter’s book “Knowledge in Action", Section 3.2.6.

The frame problem (McCarthy and Hayes)
Axioms other than effect axioms are required for formalizing dynamic worlds.
These are called frame axioms, and they specify the action invariants of the
domain, i.e., those fluents unaffected by the performance of an action.

Example. A positive frame axiom (PFA) – moving uncovered block to the
table does not affect the block:

∀x∀s. clear(x , s)→ clear(x ,do(moveToTable(x), s)).
Similarly, an object’s colour remains unchanged as a result of picking things
up, opening a door, turning on a light, electing a new prime minister, etc.

Example. A negative frame axiom (NFA) – not uncovering things:
∀x∀y∀z∀s.¬clear(x ,s)∧ on(y ,z,s)∧ (x 6=z)→¬clear(x ,do(moveToTable(y), s)).

Problem: Vast number of frame axioms; only few actions affect a given fluent.
All other actions leave the fluent invariant. If we have A actions, and F
fluents, then in the worst case we have to write about 2 · A · F frame axioms.

The frame problem (FP): how to deal with the following
• Frame axioms are necessary to reason about actions
• Accuracy. Axiomatizer must think of all these frame axioms; no omissions.
• System must reason efficiently in the presence of so many axioms.
• Modularity. The axiomatizer wants only to add new effect axioms.



Simplifying assumptions to solve the FP
Want a systematic procedure for generating all the frame axioms from effect
axioms. If possible, also want a compact representation for these frame
axioms, because in their simplest form, there are too many of them.

The special syntactic form of effect axioms considered in the previous slide
precludes indeterminate actions such as

heads(do(flip, s)) ∨ tails(do(flip, s)), ∃x(holding(x ,do(pick_up_a_block , s)).
Determinate action = action with unique effects only

No complex actions such as conditionals, or loops, or recursive procedures.

No hidden indirect effects. We assume that we managed to compile all
indirect effects so that they are explicitly formulated in effect axioms. This is a
strong assumption. It is difficult to handle arbitrary constraints on fluents that
implicitly specify indirect effects. Special case: acyclic dependencies are OK.

Other limitations: no time. Actions are atemporal. We cannot talk about how
long actions take, or when they occur. No continuous actions like pushing an
object between 2 points. Time and continuous change: the last 2 Lectures.

This is why we say that Reiter’s approach solves the FP sometimes, i.e., only
for simple, sequential, deterministic, atemporal actions without constraints.

Useful FOL equivalent transformations: review
Recall the propositional and first order logic (FOL) equivalences.
F (C) ≡ ∀x

(
x =C → F (x)

)

f (T )=C ≡ ∀x
(
x =T → f (x)=C

)

((A→ C) ∧ (B → C)) ≡ (¬A ∨ C) ∧ (¬B ∨ C) ≡
(¬A ∧ ¬B) ∨ C ∧ (¬A ∨ ¬B ∨ >) ≡
¬(A ∨ B) ∨ C ≡ ((A ∨ B)→ C)

A→ (B → C) ≡ ¬A∨ ¬B∨ C ≡ ¬(A ∧ B)∨ C ≡ (A∧B)→ C

(A∧¬B)→ C ≡ ¬(A∧¬B)∨C ≡ ¬A∨B∨C ≡ ¬(A∧¬C)∨B ≡ (A∧¬C)→ B

∀y
(

B(y)→ C
)
≡
(

(∃yB(y))→ C
)

/* if y does not occur in C.*/

Reiter’s solution: (1) effect axioms in normal form
Reiter’s solution to the FP has two parts: (1) write positive and negative effect
axioms in normal form, and (2) add causal completeness assumption.
Combining these axioms yields a successor state axiom (SSA).

∀x∀y∀s. on(x , y , s)→ clear(y ,do(moveToTable(x), s)) ≡ /* Recall the equivalence
F (C) ≡ ∀a(a=C → F (a))*/

∀x∀y∀s∀a . (on(x , y , s) ∧ a=moveToTable(x))→ clear(y ,do(a, s)) ≡
∀y∀s∀a . ∃x

(
on(x , y , s) ∧ a=moveToTable(x)

)
→ clear(y ,do(a, s)) /*1*/

∀x∀y∀z∀s. on(x , y , s)→ clear(y ,do(move(x , z), s)) ≡
∀x∀y∀z∀s∀a. (on(x , y , s) ∧ a=move(x , z))→ clear(y ,do(a, s)) ≡

∀y∀s∀a. ∃x
(

on(x , y , s) ∧ ∃z(a=move(x , z))
)
→ clear(y ,do(a, s)) /*2*/

These two positive effect axioms can be combined into the logically
equivalent form because ((A→ C) ∧ (B → C)) ≡ ((A ∨ B)→ C):
∀y∀s∀a.

(
∃x(on(x , y , s) ∧ a=moveToTable(x))∨
∃x( on(x , y , s) ∧ ∃z(a=move(x , z))

)
→ clear(y ,do(a, s)).

This is a positive effect axiom in normal form (PEA-NF).

Similarly, consider the negative effect axiom for clear :
∀x∀y∀s. ¬clear(y ,do(move(x , y), s)) ≡

∀y∀s∀a.
(
∃x(a=move(x , y))

)
→ ¬clear(y ,do(a, s)).

This is a negative effect axiom in normal form (NEA-NF).

Reiter’s solution: (2) causal completeness
Now appeal to the following Causal Completeness Assumption (=explanation
closure axiom): the positive effect axiom in normal form characterizes all the
conditions under which action a leads to y being clear (did not miss anything).

Then if ¬clear(y , s) and clear(y ,do(a, s)) are both true, the truth value of
clear must have changed due to
∃x
(
on(x , y , s) ∧ a=moveToTable(x)

)
∨ ∃x

(
on(x , y , s) ∧ ∃z(a=move(x , z))

)

This intuition can be formalized, after logically equivalent transform of a
version of Negative Frame Axiom, by the following explanation closure axiom:

∀y∀s∀a. ¬clear(y , s) ∧ clear(y ,do(a, s))→(
∃x
(
on(x , y , s) ∧ a=moveToTable(x)

)
∨ ∃x(on(x , y , s) ∧ ∃z(a=move(x , z)))

)

Exercise: rewrite this as an equivalent negative frame axiom.

Similarly, the negative effect axiom in normal form summarizes all the cases
when actions a result in ¬clear(y ,do(a, s)). This yields the following
explanation closure axiom (which is a variant of a Positive Frame Axiom):
∀y∀s∀a. clear(y , s) ∧ ¬clear(y ,do(a, s))→ ∃x(a=move(x , y)).

Exercise: rewrite this as an equivalent positive frame axiom.

Combining all these after doing logically equivalent simplifications produces
the desired successor state axiom that solves the FP thanks to ∀a at front:
∀y∀s∀a. clear(y ,do(a, s))↔

(
∃x(a=moveToTable(x) ∧ on(x , y , s))∨
∃x∃z(a=move(x , z)) ∧ on(x , y , s)

)
∨

clear(y , s) ∧ ¬∃x(a=move(x , y)).



Reiter’s solution to the FP: functional fluents
The above example demonstrated Reiter’s solution for the relational fluent.
For a functional fluent we reason similarly.

First, transform an effect axiom into a normal form:
∀x∀c∀s. colour(x ,do(paint(x , c), s))=c ≡

∀x∀c∀s∀a. a=paint(x , c)→ colour(x ,do(a, s))=c.

Second, formulate the causal explanation axiom:
∀x∀c∀s∀a. colour(x , s)=c ∧ ¬(colour(x ,do(a, s))=c)→

∃c′(a=paint(x , c′) ∧ c 6=c′ )
Notice this is equivalent to the frame axiom /*since (A∧¬B)→ C ≡ (A∧¬C)→ B*/

∀x∀c∀s∀a.colour(x , s)=c ∧ ¬∃c′(a=paint(x , c′) ∧ c 6=c′ )→ colour(x ,do(a, s))=c.

Third, combine axioms, do logical simplifications to get a SSA:
∀x∀c∀s∀a. colour(x ,do(a, s))=c ↔ a=paint(x , c)∨

colour(x , s)=c ∧ ¬∃c′(a=paint(x , c′) ∧ c 6= c′).

Notice this solves the FP thanks to (∀a) at front: all actions have no effect on
colour except of painting action. So, the frame axiom is implicitly included in
this successor state axiom. We achieved this feat by writing effect axiom in
normal form, and then by appealing to the causal completeness assumption,
when we said that nothing else can be responsible for change in colour. See
Reiter’s book “Knowledge in Action", Section 3.2.6, for another example.

Reiter’s solution is SSA: conclusion
in a general case, we obtain the successor state axiom (SSA)

∀s∀~x∀a. F (~x ,do(a, s))↔ γ+F (~x ,a, s) ∨ F (~x , s) ∧ ¬γ−F (~x ,a, s),
where γ+F (~x ,a, s) is a formula summarizing all positive effects on F , and
γ−F (~x ,a, s) is a formula representing all negative effects on F .
Conclusion: SSA is equivalent to conjunction of effect axioms in normal form
and causal explanation axioms (which are essentially frame axioms with ∀a).

We formulated Causal Completeness Assumption under an implicit Unique
Names Axioms (UNA) for Actions:
• For distinct action names A1 and A2, ∀~x∀~y . ¬(A1(~x)=A2(~y))
• Identical actions have identical arguments:
∀x1 · · · ∀xn∀y1 · · · ∀yn. A(x1, . . . , xn)=A(y1, . . . , yn)→ x1 =y1 ∧ · · · xn =yn

Comment: the consistency assumption that the sentence
¬∃~x∃a∃s.(γ−F (~x ,a, s) ∧ γ+F (~x ,a, s))

should be entailed by the underlying KB simply guarantees the integrity of the
positive and negative effect axioms. Under this consistency assumption, it will
be impossible for both F (~x ,do(a, s)) and ¬F (~x ,do(a, s)) to be simultaneously
derived. Notice that by the unique names axioms for actions, this condition is
satisfied by the example about the fluent clear .

Reiter’s solution to the FP: summary
Reiter’s solution to the frame and qualification problems includes the following
groups of axioms.

Successor state axiom (SSA): for each fluent F
∀s∀~x∀a. F (~x ,do(a, s))↔ γ+F (~x ,a, s)) ∨ F (~x , s) ∧ ¬γ−F (~x ,a, s).

If there are F fluents, then we need F axioms of this kind.

For each action A, a single action precondition axiom of the form
∀s∀~x∀a. poss(A(~x), s)↔ ΠA(~x , s).

If there are A actions, then we need A precondition axioms.

Unique name axioms (UNA) for actions: the order of A2 axioms. Ignoring
UNA, Reiter’s axiomatization requires F +A axioms in total, compared with
the 2 · F · A explicit frame axioms that would otherwise be required.
Moreover, each SSA is relatively short because most actions do not affect F .

The conciseness and effectiveness of this axiomatization relies on
I Quantification ∀a over actions in normal form effect axioms.
I The practically confirmed intuition that relatively few actions affect a

given fluent, i.e., for each fluent, there are few effect axioms.
I The causal completeness assumption with (∀a) over actions.

Appendix includes the detailed proof showing how the SSA can be derived in a
general case from the effect axioms and explanation closure axioms.

Axioms for situations: analogy with the Peano axioms
We also need axioms to reason about situations. Before we formulate them,
recall FOL theory of a single successor function. The Peano axioms for
non-negative numbers use second order language based on 0, s, <,=.

∀x∀y . s(x)=s(y)→ x =y
∀x . ¬(x < 0)

∀x∀y . x < s(y)↔ x ≤ y , where x ≤ ydef
= (x < y ∨ x =y).

∀P.
(
P(0) ∧ ∀x(P(x)→ P(s(x)))

)
→ ∀x(P(x))

This axiom characterizing the domain as the smallest set such
that 0 is in the set, and whenever x is in the set, so is s(x).

This second order (with ∀P) Peano axioms have only one standard model.
We cannot stay within FOL if we want non-standard models to be excluded.
We know second order logic is computationally intractable, but we shall learn
how to circumvent these difficulties.

Details: H.Enderton’s book "A Mathematical Introduction to Logic", 2nd Ed.,
Academic Press, 2001: see Section 3.1 “Natural Numbers with Successors".

The main issue now: each situation has many successors. Each action leads
to a new successor situation. Let’s divide the universum into 3 disjoint parts
each representing a separate sort: situations, objects and actions.



Foundational axioms Σ for situations
The unique initial situation S0 is like the number 0. Unlike Peano axioms
which have a unique successor function, we have a family of successor
functions do : action × situation 7→ situation.

∀a1∀a2∀s1∀s2. do(a1, s1)=do(a2, s2)→ a1 =a2 ∧ s1 =s2

∀s. ¬(s @ S0)

∀a∀s∀s′. s @ do(a, s′)↔ s v s′, where s v s′def
= (s @ s′ ∨ s =s′).

∀P.
(
P(S0) ∧ ∀a∀s(P(s)→ P(do(a, s)))

)
→ ∀s(P(s))

The second order axiom limits the sort situation to the smallest set containing
S0 and closed under the application of do to an action and a situation.
These axioms say that the set of situations is really a tree. No cycles, no
merging. These foundational axioms Σ are domain independent. They
provide the basic properties of situations in any application specific
axiomatization of particular fluents and actions.

Situations are finite sequences of actions that can be implemented as lists in
Prolog. S0 is like [ ], and do(A,S) adds an action A at front of a list [A|S].
Therefore, when situation lists are read from right to left, the relation s @ s′

means that situation s is a proper sub-list (suffix) of the situation s′.
Lesson: Straightforward implementations of situations satisfy axioms in Σ.
Comment: we’ll see these axioms are not important in automated planning.

The Tree of Situations

Figure: Acknowledgement: Ray Reiter "Knowledge in Action", Section 4.2.2, Page 51

Logical consequences from foundational axioms Σ
The foundational axioms Σ have a number of natural logical consequences.

∀s (S0 v s) (S0 is before any other situation)

∀s. s =S0 ∨ ∃a∃s′(s =do(a, s′) ) (Existence of a predecessor)

∀a∀s. ¬(S0 = do(a, s) ) (S0 is distinct from other situations)

∀s1∀s2. s1 @ s2 → ¬(s1 =s2) (Unique names)

∀s ¬(s @ s) (Anti-reflexivity)

∀s∀s′. s @ s′ → ¬(s′ @ s) (Anti-symmetry)

∀s1∀s2∀s3. s1 @ s2 ∧ s2 @ s3 → s1 @ s3 (Transitivity)

∀s∀s′. s v s′ ∧ s′ v s → s =s′.

Executable Situations: "Green" Edges in the Tree
A situation is a sequence of actions. There are no constraints on the actions
entering into such a sequence, so that it may not be possible to actually
execute these actions one after the other. Proceed along “green edges" only.

Executable situations: Action histories in which it is actually possible to
perform the actions one after the other.

s ≺ s′ def
= s @ s′ ∧ ∀a∀s∗

(
s @ do(a, s∗) v s′ → poss(a, s∗)

)
,

where s ≺ s′ means that s is an initial sub-sequence of s′, and all the actions
occurring between s and s′ can be executed one after the other.

We use the convenient abbreviation s � s′def
= (s ≺ s′) ∨ s =s′. Subsequently,

executable(s)
def
= S0 � s. This definition has a few logical consequences.

∀a∀s. executable(do(a, s))↔ executable(s) ∧ poss(a, s).

∀s.executable(s)↔ s =S0∨∃a∃s′
(
s =do(a, s′)∧poss(a, s′)∧executable(s′)

)

Let an abbreviation do([α1, · · · , αn],S0)) represents situation
do(αn,do(· · · ,do(α1,S0) · · · )) resulting from execution of ground action
terms α1, · · · , αn in S0. One can prove executable(do([α1, · · · , αn],S0))↔
poss(α1,S0) ∧∧n

i=2 poss(αi ,do([α1, · · · , αi−1],S0)).



Basic Action Theory (BAT)
Definition A formula is uniform in s iff it mentions neither the predicate poss,
nor @, it does not quantify over variables of sort situation, it does not mention
equality on situations, and whenever it mentions a term of sort situation
inside a fluent, then that term is s.

Let Σ be the foundational axioms for situations
Dss be a set of SSA of the form ∀a∀s∀~x . F (~x ,do(a, s))↔ ΦF (~x ,a, s),
where ΦF (~x ,a, s) is a formula that is uniform in s. (It includes γ+F (~x ,a, s),
F (~x , s) and γ−F (~x ,a, s) as subformulas.)
Dap be a set of action precondition axioms of the form

∀s∀~x . poss(A(~x), s)↔ ΠA(~x , s),
where ΠA(~x , s) is a formula uniform in s, and A is an n-ary action function.
Duna be a set of unique name axioms for actions.
DS0 is a set of FOL formulas whose only situation term is S0. It specifies the
values of all fluents in the initial situation. It also describes all the static facts.
In particular, it includes unique name axioms for object constants./*No DCA*/

Basic action theory (BAT) D is the conjunction of axioms
D=Σ ∧ Dss ∧ Dap ∧ Duna ∧ DS0

Theorem (F.Pirri & R.Reiter, J. ACM, 1999, vol 46, N3, p.325–361)
D is satisfiable iff Duna ∧ DS0 is satisfiable (i.e., no Σ is needed!).

This result is the key to tractability since Duna ∧ DS0 are sentences in FOL.

The Blocks World [Reiter,Sections 6.5.2 and 10.2]
To simplify notation, we assume all free vars are implicitly ∀-quantified at front.

Action Precondition Axioms.
poss(move(x , y), s)↔ clear(x , s) ∧ clear(y , s) ∧ x 6= y .
poss(moveToTable(x), s)↔ clear(x , s) ∧ ∃y(on(x , y , s)).

Successor State Axioms.
on(x ,y ,do(a, s))↔ a=move(x ,y) ∨ on(x ,y ,s)∧ a 6=moveToTable(x)∧¬∃z(a=move(x ,z)).

ontable(x ,do(a, s))↔ a=moveToTable(x) ∨ ontable(x , s) ∧ ¬∃y(a=move(x , y)).
clear(x ,do(a, s))↔∃y

(
∃z(a=move(y , z)) ∨ a=moveToTable(y) ∧ on(y , x , s)

)
∨

clear(x , s) ∧ ¬∃y(a=move(y , x)).
Unique Name Axioms (UNA) for Actions.

∀x , y , z.move(x , y) 6= moveToTable(z)
∀x ′, y ′, x”, y”.move(x ′, y ′)=move(x”, y”)→ x ′=x” ∧ y ′=y”
∀x , y .moveToTable(x)=moveToTable(y)→ x =y

(Incomplete) Initial Theory. Note: no Domain Closure Axiom (DCA)
on(B,C,S0) ∧ ontable(C,S0) ∧ ontable(D,S0) ∧ ¬on(P,D,S0)∧
∃x(on(x ,D,S0)) ∧ ∀y(y 6=D∧y 6=C → clear(y ,S0)) /*∀y can be over∞-many*/
∧
(
∀x∀y .on(x , y ,S0)→ ¬on(y , x ,S0)

)
∧(

∀x∀y∀z.on(y , x ,S0) ∧ on(z, x ,S0)→ y =z
)
∧(

∀x∀y∀z.on(x , y ,S0) ∧ on(x , z,S0)→ y =z
)
. /*also UNA for constants*/

The axioms in red are state constraints. One can prove that for any situation
s such that executable(s) all state constraints hold wrt s.
Initial theory is using fluent literals only (no disjunctions). The names of some blocks
are not known, and they are ∃-quantified. Our initial knowledge is incomplete.

The Projection and Executability Problems
Given an action sequence α1, . . . , αn of ground action terms, and a query
Q(s) whose only free variable is the situation variable s , what is the answer
to Q in that situation resulting from performing this action sequence from S0 ?
This is the projection problem. Define this formally as the problem of
determining whether BAT |=? Q(do([α1, . . . , αn],S0)).
The executability problem: Determine whether ground actions α1, . . . , αn can
be executed in sequence one after another. Formally, is it the case that

BAT |=? executable(do([α1, . . . , αn],S0)).
We are going to see that both these computational problems can be solved
by defining a special purpose regression operator R applicable to a formula
with respect to a ground situation term. This is a recursive operator that will
reduce a given formula to another formula with respect to S0 only.
Then, we will see that the projection problem can be reduced to
Duna ∧ DS0 |=? R[Q(do([α1, . . . , αn],S0))]. Notice: LHS has only FOL axioms
about initial situation and UNAs, while RHS will be a formula about S0 only.
Similarly the executability problem can be reduced to
Duna ∧ DS0 |=? poss(α1,S0) ∧∧n

i=2R[poss(αi ,do([α1, · · · , αi−1],S0))].

Alternative approach: compute progression of DS0 incrementally through
actions α1, · · · , αn and then check if the query is true now. Next Lecture.

Goal Regression Operator: Defined Recursively
Assume W is a regressable formula. The essence of W is that each of its
ground situation terms is rooted at S0. Therefore, one can tell, by inspection
of such a term, exactly what actions it involves.

For simplicity, let a regressable formula W mention no functional fluents, but
only relational fluents.

Assume a background axiomatization that includes a set of successor state
and action precondition axioms.

Intuitively, the regression operator eliminates Poss atoms in favour of their
definitions as given by action precondition axioms, and replaces fluent atoms
about do(A,S) by logically equivalent expressions about S as given by SSA.
Moreover, it repeatedly does this until it cannot make such replacements any
further. In Prolog: “fluent(Arg1,[A | S])" rule calls recursively fluent(Arg2,S).

Suppose W is an atom. Since W is regressable, there are four possibilities.
(a) W is a situation independent atom. Then, R[W ] = W .

(b) W is a relational fluent atom of the form F (~t ,S0). Then, R[W ] = W .



Regression: suppose W is an atomic formula
(c) W is a regressable poss atom, so it has the form poss(A(~t),S) for an
action term A(~t) and situation S. In BAT, there must be an action precondition
axiom for A of the form ∀s∀~x . poss(A(~x), s)↔ ΠA(~x , s). Then,

R[ poss(A(~t),S) ] = R[ ΠA(~t ,S) ].

In other words, replace the atom poss(A(~t),S) by a suitable instance of the
RHS of A’s action precondition axiom, and regress that expression.
If action A(~t) has free variables as arguments, and if there are quantified
variables in ΠA(~x , s), we rename these quantified vars to prevent the
quantifiers from capturing free variables in A(~t).

(d) W is a relational fluent atom of the form F (~t ,do(A,S)). Let F ’s SSA in
BAT be of the form ∀a∀s∀~x . F (~x ,do(a, s))↔ ΦF (~x ,a, s). Then,

R[ F (~t ,do(A,S)) ] = R[ ΦF (~t ,A,S) ].

In other words, replace the atom F (~t ,do(A,S)) by a suitable instance of the
RHS of the equivalence in F ’s SSA, and regress this formula.
If there are free variables as arguments in F (~t ,do(A,S)), and if there are any
quantified variables in ΦF (~x ,a, s), then rename them to prevent the
quantifiers (if any) in ΦF (~x ,a, s) from capturing free variables in the instance
F (~t ,do(A,S)).

Regression: non-atomic formulas.
For non-atomic formulas W , regression is defined recursively over structure:

R[¬W ] = ¬R[W ],
R[W1 ∧W2] = R[W1] ∧R[W2],
R[∃v(W )] = ∃v .R[W ].

Conclusion: Each R-step reduces the depth of nesting of the symbol do in
the fluents of W by substituting suitable instances of the right hand side
(RHS) of a SSA for each occurrence of a fluent atom of the form
F (t1, . . . , tn,do(A,S)). This reduces the depth of nesting of do(·, ·) by one.

Theorem (The Regression Theorem) Suppose W is a regressable sentence
of situation calculus that mentions no functional fluents, and D is a basic
theory of actions. Then, D |= W iff DS0 ∧ Duna |= R[W ]. /* No Σ on LHS */
Proof: F. Pirri and R.Reiter, J. ACM, 1999, vol. 46(3): pages 325-361.

Sometimes, we need a single-step regression operator ρ[F ; A], where F is a
fluent, A is a specific action. Let SSA be
∀a∀s∀~x . F (~x ,do(a, s)) ↔ γ+F (~x ,a, s) ∨ F (~x , s)∧¬γ−F (~x ,a, s).

To compute ρ[F ; A] replace the variable a in the RHS of this SSA with the
action A and do simplifications using UNA and FOL equivalences. The
resulting formula is ρ[F ; A]. For any formula W , ρ[W ; A] is defined similarly.

Example: Student Records Administration
Fluents: enrolled(st , course, s): st is enrolled in course in situation s.

grade(st , course,grade, s): The grade of st in course is grade in situation s.
preReq(pre, course): pre is a prerequisite for course in s.

Initial state: arbitrary FOL sentences, the only restriction being that fluents
mention only the initial situation S0.
(enrolled(Sue,C100,S0)∨enrolled(Sue,C200,S0)) ∧ ∀p(¬preReq(p,C100))
∃c(enrolled(Bill ,c,S0)) ∧ ∀p

(
preReq(p,P300)↔ (p =P100 ∨ p =M100)

)
∧

∀c
(
enrolled(Bill , c,S0)↔ (c =M100 ∨ c =M110 ∨ c =P200)

)
∧

enrolled(Mary ,C100,S0) ∧ ¬enrolled(John,M200,S0) ∧ . . .
grade(Sue,P300,75,S0) ∧ grade(Bill ,M200,70,S0) ∧ . . .

Actions, there are 3 actions: register(st , c), change(st , c,g), drop(st , c).

Precondition axioms for actions:
A student can register in a course iff she has obtained a grade of at least 50
in all prerequisites for the course: ∀st∀c∀s. poss(register(st , c), s)↔
∀p
(
preReq(p, c)→ ∃g(grade(st ,p,g, s) ∧ g ≥ 50)

)
.

It is possible to change a student’s grade iff an old grade is different:
∀st∀c∀g∀s. poss(change(st , c,g), s)↔ ∃g′(grade(st , c,g′, s) ∧ g′ 6= g).

A student may drop a course iff the student is currently enrolled in that
course: ∀st∀c∀s. poss(drop(st , c), s)↔ enrolled(st , c, s).

Example: Effect Axioms and SSAs
∀st∀c∀s. ¬enrolled(st , c,do(drop(st , c), s))
∀st∀c∀s. enrolled(st , c,do(register(st , c), s))
∀st∀c∀g∀s. grade(st , c,g,do(change(st , c,g), s))
∀st∀c∀g∀g′∀s. g′ 6=g → ¬grade(st , c,g,do(change(st , c,g′), s))

First, we have to transform these effect axioms in normal form. How ?

∀st∀c∀s∀a. a=drop(st , c)→ ¬enrolled(st , c,do(a, s))
∀st∀c∀s∀a. a= register(st , c)→ enrolled(st , c,do(a, s))
∀st∀c∀g∀s∀a. a=change(st , c,g)→ grade(st , c,g,do(a, s))
∀st∀c∀g∀s∀a. ∃g′(a=change(st , c,g′) ∧ g′ 6=g)→ ¬grade(st , c,g,do(a, s))

Solve the frame problem by appealing to the causual completeness
assumption: add explanation closure axioms. This yields the following SSAs:
∀st∀c∀s∀a. enrolled(st , c,do(a, s))↔ a= register(st , c) ∨

enrolled(st , c, s) ∧ ¬(a=drop(st , c))
∀st∀c∀g∀s∀a. grade(st , c,g,do(a, s))↔ a=change(st , c,g) ∨

grade(st , c,g, s) ∧ ¬∃g′
(
a=change(sr , c,g′)

)
.

Using these precondition and successor state axioms, we can see how
regression can help answer projection and executability queries.



Example: Executability Testing
Compute whether the following sequence of transactions is executable:
register(Bill ,C100),drop(Bill ,C100),drop(Bill ,C100) which intuitively should
fail because the first drop leaves Bill unenrolled in C100, so that the
precondition for the second drop will be false. By regression theorem,

R[executable([register(Bill ,C100),drop(Bill ,C100),drop(Bill ,C100)],S0)] =
R[poss(register(Bill ,C100),S0)]∧
R[poss(drop(Bill ,C100),do(register(Bill ,C100),S0))]∧
R[poss(drop(Bill ,C100),do(drop(Bill ,C100),do(register(Bill ,C100),S0)))].

Using preconditions, occurrences of poss can be equivalently replaced.

R[∀p.[preReq(p,C100)→ ∃g(grade(Bill ,p,g,S0) ∧ g ≥ 50)]∧
R[enrolled

(
Bill ,C100,do(register(Bill ,C100),S0)

)
]∧

R[enrolled
(
Bill ,C100,do(drop(Bill ,C100),do(register(Bill ,C100),S0))

)
].

Notice, in the top line, regression is applied to implication between atoms with
S0. Therefore, the resulting expression remains same. In the next two lines,
since regression applies to fluent atoms, each expression can be simplified
using SSAs. In the SSA for enrolled , replace the variables st , c with Bill,C100, the
variable a with drop(Bill,C100) and s with do(register(Bill,C100),S0). Simplify.

This yields a logically equivalent expression
[∀p.[preReq(p,C100)→ ∃g(grade(Bill ,p,g,S0) ∧ g ≥ 50)] ∧ True ∧ False.
So the transaction sequence is indeed impossible.

Example: regression of a query wrt sequence T
Transaction T = [change(Bill ,C100,60), register(Sue,C200),drop(Bill ,C100)].

Given a query BAT |=? Q(do(T ,S0)), by the Regression Theorem, we regress
the query and check if the result is a logical consequence from the axioms for
the initial situation together with unique names axioms. Example of a query:

BAT |=? ∃st . enrolled(st ,C200,do(T,S0))∧
¬enrolled(st ,C100,do(T,S0))∧

∃g(grade(st ,C200,g,do(T,S0)) ∧ g ≥ 50.

Since query is the conjunction of fluent atoms, regression of each fluent
involves using SSA for the fluent with respect to the given sequence of
actions T. For example, for the fluent R[enrolled(st ,C200,do(T,S0))] only
the action register(Sue,C200) may have any effect. Therefore, regression
using SSA for this fluent and UNA for actions yields the following RHS(

register(Sue,C200)= register(st ,C200)∨enrolled(st ,C200, do(change(Bill,C100, 60),S0))
)

≡ (st =Sue ∨ enrolled(st ,C200,S0)).

Using negation of the RHS of the same SSA, R[¬enrolled(st ,C100,do(T,S0))]=
drop(Bill ,C100) 6= register(st ,C100)∧

(¬enrolled(st ,C100,S0) ∨ drop(Bill ,C100)=drop(st ,C100)
Equivalent simplifications assuming that Duna |= C100 6= C200 yield

∃st .
(

(st =Sue ∨ enrolled(st ,C200,S0))∧
(st =Bill ∨ ¬enrolled(st ,C100,S0))∧
∃g (grade(st ,C200,g,S0) ∧ g ≥ 50)

)
.

The answer to the query is obtained by evaluating this last formula in DS0 .

Appendix: Reiter’s Solution in General Case

The following slides are optional . They present a formal proof of how
SSA can be obtained from normalized effect axioms and explanation
closure axioms in a general case.

Normal Form for Effect Axioms (in the General Case)
Suppose each of the given positive effect axioms has the form:

∀s∀~y . φ+F (s)→ F (~t ,do(A, s)),

where A is an action term,~t is a tuple of terms, φ+F (s) is a FOL formula about
situation s representing a context condition when an action A has an effect on
a fluent F , ~y are object variables, if any, that may occur in A or in φ+F .

This can be rewritten in the equivalent form /* Recall the logical equivalence
∀y(B(y)→ C) ≡ (∃yB(y))→ C */

∀s∀~x∀a.
(
∃~y(a=A ∧ ~x =~t ∧ φ+F (s))

)
→ F (~x ,do(a, s)).

We write ~x =~t as an abbreviation for x1 = t1 ∧ · · · ∧ xn = tn, where ~x are fresh
variables distinct from any ~y occurring in the original effect axiom, if any.
/*Notice we use repeatedly the equivalence ∀x(x =C → F (x)) ≡ F (C) and the
equivalence A→ (B → C) ≡ ¬A∨ ¬B∨ ¬C ≡ ¬(A ∧ B)∨ C ≡ (A∧B)→ C */

To summarize each of the p positive effect axioms for fluent F can be written as
∀s∀~x∀a. RHSF

1 (~x ,a, s)→ F (~x ,do(a, s))
...

∀s∀~x∀a. RHSF
p (~x ,a, s)→ F (~x ,do(a, s))

These p sentences are equivalent to a single effect axiom in normal form
∀s∀~x∀a. γ+F (~x ,a, s)→ F (~x ,do(a, s)),

where γ+F (~x ,a, s) is an abbreviation for RHSF
1 (~x ,a, s) ∨ · · · ∨ RHSF

p (~x ,a, s).

Similarly, compute the normal form for the negative effect axioms for fluent F .



Reiter’s Solution to the FP: the General Case
To generalize the previous examples we suppose given, for each fluent F , the
following two normal form effect axioms.

Positive Normal Form Effect Axiom (PNFEA) for fluent F
∀s∀~x∀a. γ+F (~x ,a, s)→ F (~x ,do(a, s)) (PNFEA)

Negative Normal Form Effect Axiom (NNFEA) for fluent F
∀s∀~x∀a. γ−F (~x ,a, s)→ ¬F (~x ,do(a, s)) (NNFEA)

Causal Completeness Assumption: Axioms (PNFEA) and (NNFEA),
respectively, characterize all the conditions under which action a can lead to
F becoming true (respectively, false) in the successor situation. They are all
the causal laws for the fluent F .

Hence, if F ’s truth value changes from false to true as a result of doing a, then
γ+F (~x ,a, s) must be true. Similarly, if F ’s value changes from true to false.

This informally stated assumption can be represented axiomatically by the
following Explanation Closure Axioms (ECA)

∀s∀~x∀a. F (~x , s) ∧ ¬F (~x ,do(a, s))→ γ−F (~x ,a, s) (ECA1)
∀s∀~x∀a. ¬F (~x , s) ∧ F (~x ,do(a, s))→ γ+F (~x ,a, s) (ECA2)

Notice (ECA1) and (ECA2) express compactly all the frame axioms because
all relevant action terms are mentioned in γ+F (~x ,a, s), γ−F (~x ,a, s).

Reiter’s Solution: Equivalent Transformations.
From (ECA1) we can obtain a positive frame axiom (PFA) for F :

(ECA1) ≡ ∀s∀~x∀a. ¬F (~x , s) ∨ F (~x ,do(a, s)) ∨ γ−F (~x ,a, s)
≡ ∀s∀~x∀a. ¬F (~x , s) ∨ ¬(¬γ−F (~x ,a, s)) ∨ F (~x ,do(a, s))
≡ ∀s∀~x∀a. (F (~x , s) ∧ ¬γ−F (~x ,a, s))→ F (~x ,do(a, s)) (PFA)

Similarly, from (ECA2) we can obtain a negative frame axiom (NFA) for F :
(ECA2) ≡ ∀s∀~x∀a. F (~x , s) ∨ ¬F (~x ,do(a, s)) ∨ γ+F (~x ,a, s)

≡ ∀s∀~x∀a. ¬F (~x ,do(a, s)) ∨ ( F (~x , s) ∨ γ+F (~x ,a, s) )
≡ ∀s∀~x∀a. F (~x ,do(a, s))→ (F (~x , s) ∨ γ+F (~x ,a, s)) (NFA)

Since (NNFEA) ≡ ∀s∀~x∀a. F (~x ,do(a, s))→ ¬γ−F (~x ,a, s) and because in
propositional logic ((A→ B) ∧ (A→ C)) ≡ (A→ (B ∧ C)), (NFA) and
(NNFEA) yield(
∀s∀~x∀a. F (~x ,do(a, s))→ ¬γ−F (~x ,a, s) ∧ (F (~x , s) ∨ γ+F (~x ,a, s))

)
≡

∀s∀~x∀a. F (~x ,do(a, s))→ F (~x , s)∧¬γ−F (~x ,a, s)∨¬γ−F (~x ,a, s)∧γ+F (~x ,a, s)) (∗)
Consistency assumption: assume underlying KB about actions entails
¬∃~x∃a∃s.(γ−F (~x ,a, s) ∧ γ+F (~x ,a, s)) ≡ ∀s∀~x∀a(γ+F (~x ,a, s)→ ¬γ−F (~x ,a, s))

Since B∧A ≡ A, if A |= B, under consistency assumption the sentence
(∗) ≡ ∀s∀~x∀a. F (~x ,do(a, s))→ F (~x , s) ∧ ¬γ−F (~x ,a, s) ∨ γ+F (~x ,a, s))

Reiter’s Solution to the FP: Conclusion
(PNFEA) and (PFA) together are logically equivalent to
∀s∀~x∀a.

(
γ+F (~x ,a, s) ∨ F (~x , s) ∧ ¬γ−F (~x ,a, s)

)
→ F (~x ,do(a, s))

Therefore, we obtain the successor state axiom (SSA)
∀s∀~x∀a. F (~x ,do(a, s))↔ γ+F (~x ,a, s) ∨ F (~x , s) ∧ ¬γ−F (~x ,a, s)

Conclusion: SSA is equivalent to conjunction of effect axioms in normal form
and causal explanatory axioms (which are essentially frame axioms).

We formulated Causal Completeness Assumption under an implicit Unique
Names Axioms (UNA) for Actions:
• For distinct action names A and B, ∀~x∀~y . ¬(A(~x)=B(~y))
• Identical actions have identical arguments:
∀x1 · · · ∀xn∀y1 · · · ∀yn. A(x1, . . . , xn)=A(y1, . . . , yn)→ x1 =y1 ∧ · · · xn =yn

Comment: the consistency assumption that the sentence
¬∃~x∃a∃s.(γ−F (~x ,a, s) ∧ γ+F (~x ,a, s))

should be entailed by the underlying KB simply guarantees the integrity of the
effect axioms (PNFEA) and (NNFEA). Under this consistency assumption, it
will be impossible for both F (~x ,do(a, s)) and ¬F (~x ,do(a, s)) to be
simultaneously derived. Notice that by the unique names axioms for actions,
this condition is satisfied by the example about the fluent broken.
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