
Lecture 2: Forgetting and Progression

Mikhail Soutchanski

Acknowledgement:
includes examples from the papers “Forget It!" by F.Lin&R.Reiter and

“On First-Order Definability and Computability of Progression for Local-Effect Actions and
Beyond" by Y.Liu&G.Lakemeyer

July 10, 2025

Recap: the Projection Problem
Let BAT be a basic action theory, and Q(s) be a situation calculus query
formula uniform in s. We would like to know whether it is true in
S =do([A1, . . . ,An],S0) after executing a sequence of (ground) actions
A1; . . . ; An starting from S0. We call it the projection problem.
More formally, the projection problem is find whether BAT |=? Query(S).

BAT does not include the Domain Closure Axiom (DCA) saying that there are
finitely many constants C1, . . . ,Cn such that ∀x(x =C1 ∨ · · · ∨ x =Cn).
If initial DS0 has infinitely many constants, BAT has infinitely many models.
The initial theory DS0 does not include the Closed World Assumption (CWA).
Therefore, it is an incomplete logical theory. Lecture 3: how to find a plan.
We discussed that the projection problem can be solved using regression.
Recall that the regression operator distributes inside any logical formulas with
an arbitrary main connective ∨,∧,→,∀,∃.
When applied to poss(Al ,S), regression replaces poss(Al ,S) with the RHS of
the precondition axiom for Al .
When applied to the fluent about do(A,S), regression replaces the fluent with
the RHS of its SSA that uses S only. The length of situation decreases by 1.

However, regression can be used only if the length n of the situation term S is
finite and does not grow indefinitely. Applying regression recursively becomes
computationally inefficient when the situation term is very long.

Progression: Motivation
Progression is computational mechanism for solving the projection problem.
Progression is an alternative to regression.

Regression is basically reasoning backward: from future state back to the
initial state. Start with a query about the situation term representing a
sequence of actions, and replace the query incrementally with the equivalent
formula about an earlier situation. When regression terminates, we got a
formula about the initial situation S0 only.

Progression is opposite to regression in the sense that progression is
reasoning forward: from current state to the next state. Once an action has
been executed, we take a set of formulas describing the initial state, update it
accordingly, and obtain a new set of formulas that become true after the
executed action.

This operation can be carried out indefinitely as long as we can efficiently
update our knowledge after every executed action. Therefore, we have to find
classes of actions for which update can be efficiently computed.

Before we study progression, we have to understand (a) how old knowledge
that is no longer true can be forgotten. Subsequently, we will see (b) how new
knowledge can be combined into update after forgetting. Progression is done
in this order: (a) forget obsolete facts, then (b) include new effects.

Forgetting: History and an Idea
One can forget about a ground atom or about a predicate in general. We
consider the former case. In the simplest case, we can consider forgetting
about a propositional atom.

Forgetting was defined by George Boole in the middle of 1850s. About 100
years later, its importance was reaffirmed by Claude Shannon in 1950s, who
proposed so-called Shannon expansion for Boolean functions in terms of
switching circuits. Later, it found applications in AI thanks to a seminal paper
written by Fangzhen Lin and Ray Reiter with the title “Forget It!".

Let F(x1, . . . , xk−1, xk , xk+1, . . . , xn) be a propositional (Boolean) formula with
n propositional variables, and let >/⊥ be propositional constants denoting
True and False. Since each propositional symbol xk can have only one of the
two mutually exclusive truth values, F(x1, . . . , xk−1, xk , xk+1, . . . , xn) ≡
xk∧F(x1, . . . , xk−1,>, xk+1, . . . , xn) ∨ ¬xk∧F(x1, . . . , xk−1,⊥, xk+1, . . . , xn).

Each of the two sub-expressions does not depend on xk . In this sense, each
subexpression forgot about xk . Other than that, each sub-expression keeps
all knowledge that was present in the formula F as long as we are concerned
only about queries not using xk . Same intuition applies to FOL formulas.

A theory T ′ is the result of forgetting about a ground atom P(~C) in a theory
T , if T ′ entails all sentences entailed by T except the ones related to P(~C).

Forgetting: Formal Semantic Definition
We are prepared to consider formal definitions.

Definition
Let P(~C) be a ground atom, and letM1 andM2 be two first-order structures.
We write M1 ∼P(~C)

M2 and sayM1 andM2 agree on everything except

possibly on the interpretation of P(~C), if:
1. M1,M2 have the same domain, and interpret every function identically.

2. For every predicate Q distinct from P,M1[Q] =M2[Q].

3. Let ~u =M1[~C], then for any tuple ~d of the elements in the domain that is
distinct from ~u, ~d ∈M1[P] iff ~d ∈M2[P].

Definition
Let T be a theory, and p a ground atom. A theory T ′ is a result of forgetting
about p in T , denoted by forget(T ,p), if for any structureM′,M′ is a model
of T ′ iff there is a modelM of T such thatM∼pM′.
Properties of forgetting.
If forget(T ; p) = T1 and forget(T ; p) = T2, then T 1 ≡ T2.
T |= forget(T ; p), i.e., a theory resulting from forgetting is logically weaker.

Forgetting: Syntactic Characterization
The result of forgetting a ground atom P(~C) in φ can be computed by simple
syntactic manipulations.

Let φ[P(~C)] denote the formula obtained from a given input formula φ by
replacing every occurrence of P(x) (if any) in the formula φ by:

(~x = ~C ∧ P(~C)) ∨ (~x 6= ~C ∧ P(~x)).

Property: φ and φ[P(c)] are logically equivalent.
Exercise: prove this statement using Basic Semantic Definition (BSD).

Let >/P(c) and ⊥/P(c) denote substitution of P(c) in φ[P(c)] with True and
False, respectively. For clarity, we introduce new propositional constant > as
an abbreviation for (S0 =S0), and define ⊥ in the logical language as an
abbreviation for ¬(S0 =S0). The symbols >,⊥ are more readable.
Notation. φ+ = φ[P(c)](>/P(c)) and φ− = φ[P(c)](⊥/P(c)).

Theorem
(LinReiter1994, Theorem 4) Let T = {φ} be a theory, and P(~C) be a ground
atom, then forget(T ,P(~C)) ≡ φ+ ∨ φ−, where φ+ and φ− are the result of
replacing P(~C) by > and ⊥ in φ[P(~C)], respectively.

Comment: This is saying that formula forget(T ,P(~C)) defined semantically
can be characterized purely syntactically using sub-formulas φ+, φ−.

Forgetting: Example 1
(1) Let φ be formula student(John)∨ student(Joe)∨ teacher(John). Suppose
we would like to forget that student(John), i.e., p is student(John). Then, φ[p]
is obtained by replacing every occurrence of student(x) in φ with the formula

x =John ∧ student(John) ∨ x 6=John ∧ student(x).

This yields the following.
John=John ∧ student(John) ∨ John 6=John ∧ student(John)∨
John=Joe ∧ student(John) ∨ John 6=Joe ∧ student(Joe)∨
teacher(John).

Consequently, φ+
p is obtained by replacing student(John) with >

John=John ∧ > ∨ John 6=John ∧ > ∨
John=Joe ∧ > ∨ John 6=Joe ∧ student(Joe) ∨
teacher(John),

which is equivalent to >.

It can be similarly shown that φ−p is equivalent to
(John 6=Joe ∧ student(Joe)) ∨ teacher(John).

Therefore, forgetting student(John) in this formula φ is
forget(φ, student(John)) ≡ φ+

p ∨ φ−p ≡ >.
This is intuitively what we expect, since forgetting an atom in any disjunction
should be a logical formula weaker than the original disjunction.

Forgetting: Examples
(2) Let φ = ∃x(student(x)). Notice φ[student(John)] is an abbreviation for
∃x .
(
(x =John ∧ student(John)) ∨ (x 6=John ∧ student(x))

)
.

Then φ+
student(John) ≡ ∃x(x =John) ∨ ∃x(x 6=John ∧ student(x)) which is valid.

Therefore, no matter what φ−student(John) is, forget(φ; student(John))= >.
Observe after forgetting an atom wrt ∃-quantified knowledge, we lost
knowledge

(3) Let φ = ∀x(student(x)). By definition of φ[P(~C)], φ[student(John)] is
∀x .
(
(x =John ∧ student(John)) ∨ (x 6=John ∧ student(x))

)
.

We see that φ+
student(John) is equivalent to

∀x(x =John ∨ x 6=John ∧ student(x)).

Similarly, φ−student(John) is equivalent to
∀x(x 6=John∧student(x)).

Exercise: prove ∀x(F (x) ∨G(x)) ∨ ∀xF (x) ≡ ∀x(F (x) ∨G(x)) by BSD. So,
forget(φ;student(John)) ≡ ∀x(x =John ∨ x 6=John ∧ student(x)).

But by BSD (do case analysis), since each element of the domain is either
John or not John, this is logically equivalent to ∀x(x 6=John→student(x)).

Observe, our ∀-quantified knowledge weakened, but just a bit since we forgot
only one atomic fact.

Forgetting Multiple Atoms at Once
For the purpose of computing progression, when forgetting is applied multiple
times, and, possibly to the same predicate symbol more than once, it’s
possible to define the notion of forgetting about a set of ground atoms at once

Let G be a finite set of ground atoms to be forgotten. A truth assignment A to
atoms from G is called a G-model. M(G) denotes the set of all G-models.

Let φ be a formula and A a G-model. Let P(~c1), P(~c2), ... P(~cm) be all those
ground atoms in G, which use the predicate letter P, and let A(P(~cj))
represent the truth value of P(~cj) specified by A.

We use φ[A] to denote the result of replacing (for each predicate symbol P in
G) every occurrence of an atom P(~x) in φ by the following formula:

m∨

j=1

(~x = ~cj ∧ A[P(~cj)]) ∨ (
m∧

j=1

~x 6= ~cj) ∧ P(~x). (1)

Theorem
(LiuLakemeyer2009, Theorem 2.4) Let G be a finite set of ground atoms and
φ a formula. Then, forget(φ,G) and

∨
A∈M(G) φ [A] are logically equivalent.

Forgetting about a set G of ground literals amounts to forgetting about each
literal one after another, i.e., if G ={P1, . . . ,Pn}, then

forget(φ,G) = forget(· · ·forget(forget(φ,P1), . . . ,Pn)).

Forgetting multiple atoms at once: Example
Let φ = ∀x(clear(x)) and G = {clear(A), clear(B)}. Then, by formula (1) we
get that φ[A] represents

∀x
(
x =A∧A[clear(A)]∨x =B∧A[clear(B)]∨(x 6=A∧x 6=B∧clear(x))

)
.

For each of the 4 (why 4?) truth assignments A to atoms in G we compute

φ[clear(A) is True, clear(B) is True] ≡
∀x .(x =A ∧> ∨ x =B ∧>) ∨ x 6=A ∧ x 6=B ∧ clear(x) ≡

∀x .(x =A ∨ x =B ∨ x 6=A ∧ x 6=B ∧ clear(x)).
φ[clear(A) is True, clear(B) is False] ≡ ∀x .(x =A ∨ x 6=A ∧ x 6=B ∧ clear(x)).

φ[clear(A) is False, clear(B) is True] ≡ ∀x .(x =B ∨ x 6=A ∧ x 6=B ∧ clear(x)).

φ[clear(A) is False, clear(B) is False] ≡ ∀x .(x 6=A ∧ x 6=B ∧ clear(x)).

Since the 2nd, 3rd and 4th formulas are special cases of a longer disjunction
in the 1st formula, then applying the logical equivalence
∀x(F (x)∨G(x))∨∀xF (x)≡∀x(F (x)∨G(x))

yields forget(φ,G) ≡ ∀x .(x =A ∨ x =B ∨ x 6=A ∧ x 6=B ∧ clear(x)).
Exercise: prove (using case analysis in BSD) that the last formula is logically
equivalent to ∀x .(x 6= A ∧ x 6= B → clear(x))

Observe that after forgetting about two atomic facts in ∀-quantified sentence,
we no longer know the forgotten facts.

Forgetting Multiple Atoms: Properties
Properties of forgetting (exercises to prove).

forget(forget(T ; P1); P2) ≡ forget(forget(T ; P2); P1)

forget(T1 ∨ T 2; P) ≡ (forget(T 1; P) ∨ forget(T2; P))

Proof of Theorem 4 (LiuLakemeyer2009, Theorem 2.4): outline.

forget(φ; G) ≡ forget(
∨

A∈M(G)

(φ ∧ A); G) ≡
∨

A∈M(G)

forget(φ ∧ A; G) ≡
∨

A∈M(G)

φ[A]

since φ[A] = forget(φ ∧ A; G).
For example, if G = P(t), then forget(φ; P(t)) = φ+ ∨ φ−.

Progression: Motivation and Formal Definition
Lin and Reiter formalized the notion of progression in AI,v92(1-2)p.131-167.
Informally, it involves updating an initial theory DS0 with the effects of
executing an action α. The idea: “forget" about all the logical consequences
of the fluents in DS0 that change, and “add” new effects from action α. We
denote as Sα the situation term do(α,S0).

Definition
For two many-sorted structuresM,M′ of the situation calculus signature,
and a ground action α, we writeM∼Sα

M′ if:
1. M andM′ have the same domains for sorts action and object;

2. M andM′ interpret all situation-independent predicate and function
symbols identically;

3. M andM′ agree on interpretation of all fluents at Sα, i.e. for every fluent
F and every assignment σ, we haveM, σ |=F (~x ,Sα) iffM′, σ |=F (~x ,Sα).

Definition
Let D be a basic action theory with initial theory DS0 and α be a ground action
term. A set of formulas DSα

(in 2nd-order logic) is called progression of DS0

to Sα (w.r.t. D and α) if it is uniform in situation term Sα and for any structure
M,M is a model of DSα

iff there is a modelM′ of D such thatM∼Sα
M′.

Logical Properties of Progression
Observe that foundational axioms Σ are needed if one proofs (usually by
induction over s) that a state constraint ∀sC(s) is entailed by an action theory.
However, to answer projection queries, the smaller set D−Σ is good enough
Theorem [Lin and Reiter, 1997] Let D be a BAT, φ(s) be a formula uniform
in s, and A be a sequence of ground actions. Then, /* No Σ is needed!*/

D |= φ(do(A,S0)) iff DS0 ∪ DSS ∪ Dap ∪ UNA |= φ(do(A,S0)).
This can be proved by induction over structure of φ from the following.
Proposition 3.2 [Lin and Reiter, 1997] Given any modelM− of D−Σ, there
is a modelM of D such that:
1. M− andM have the same domains for sorts action and object, and
interpret all situation independent predicates and functions identically,
2. for any sequence A of ground action terms, any fluent F , and any variable
assignment ν: M, ν |= F (x̄ ,do(A,S0)) iff M−, ν |= F (x̄ ,do(A,S0)).

Proposition 4.3 [Lin and Reiter, 1997] Let DSα
be a progression of the initial

DS0 to Sα. Every model of D is a model of Σ∪DSS∪Dap ∪UNA∪ DSα
.

Proposition 4.4 shows that for any model of progressed BAT, there exists a
model of original BAT such that they agree on all fluents in future of Sα.

Theorem 4.5 [Lin and Reiter, 1997] Let DSα
be a progression of DS0 to Sα.

For any (possibly 2nd order) sentence φ uniform in Sα, DSα
|= φ iff D |= φ.

This important theorem informs us that DSα
is a strongest postcondition of the

precondition DS0 , w.r.t. action α. This is a key to tractability, if DSα
is in FO.

Progression: When it Can Be Efficiently Computed?
For strictly context free SSAs, if an initial DS0 is a (possibly infinite) set of
literals, then progression DSα

is merely an insertion and removal of literals
based on the effects of α. In this important special case, progression DSα

is a
formula in FOL: see Section 8.1 in [Lin and Reiter, 1997]. This generalizes
STRIPS, where DS0 is a finite set of atoms, and both DCA and CWA apply.

For a general DS0 , progression is always definable as a 2nd order theory.
It turns out, first order definable progression is too weak: see an example in

Vassos& Levesque “How to progress a database III", AI, 2013,v195, p203-221

We can be interested in a middle point between these extremes.
Liu&Lakemeyer prove in their paper (Theorem 3.6) that for a local-effect BAT,
if an initial DS0 is in proper+, then its progression remains in proper+ (in FO).
We start with a discussion of examples of local and global effect actions.
An action has a local effect on a fluent, if all arguments of the fluent are
subsumed by the arguments of the action. Action’s arguments determine all
changes that may happen. Since each action has finitely many arguments, in
this case there might be a few local changes only.

Informally, an action A has a non-local effect on a fluent, if other objects (not
mentioned in A) can be affected by an action. This happens if at least 1
argument of the fluent is not mentioned in the arguments of the action A.

Successor State Axioms for Blocks World
Fluents: On(x , y) and Ontable(x)
Actions: moveToTable(x) and move(x , y)
Below, we assume that all free variables x , y ,a, s are ∀-quantified at front.

On(x , y ,do(a, s))↔ a=move(x , y)∨
On(x , y , s) ∧ a 6=moveToTable(x) ∧ ¬∃z(a=move(x , z)).

Action move(x , y) has a positive local effect
Action moveToTable(x) has a negative non-local effect

Ontable(x ,do(a, s))↔ a=moveToTable(x)∨
Ontable(x , s) ∧ ¬∃y(a=move(x , y)).

Actions moveToTable(x) and move(x , y) have local effect

Clear(x ,do(a, s))↔ ∃y , z
(
a=move(y , z) ∧On(y , x , s)

)
∨

∃y
(
a=moveToTable(y) ∧On(y , x , s)

)
∨

Clear(x , s) ∧ ¬∃w(a=move(w , x)).
Actions move(y , z) and moveTotable(y) have non-local effects

Sometimes, an action has an effect only on a few objects, but it is no local
according to the definitions. In this case, we say action has a non-local effect.

Subsequently, we consider another version of the blocks world, where all
actions have only local effects.

Successor State Axioms for Logistics
Fluents: at(x , loc, s), x is at a location loc in situation s.
Actions: drive(t , loc1, loc2, city) moves the truck t from loc1 to loc2 and is
possible only if the truck t is at loc1 and both locations are in the same city .

fly(air , locFrom, locTo) is possible if air is an airplane at locFrom, and if
both locations are airports in distinct cities.

∀x , y ,a, s.at(x , y ,do(a, s))↔
∃z1,∃z2

(
a=drive(x , z1, y , z2) ∧ city(z2) ∧ truck(x) ∧ loc(z1)∧

in_city(z1, z2) ∧ loc(y) ∧ in_city(y , z2)
)
∨

∃z1,∃z2,∃z3
(
a=drive(z1, z2, y , z3) ∧ obj(x) ∧ truck(z1)∧

loaded(x , z1, s) ∧ loc(z2) ∧ city(z3) ∧ in_city(z2, z3)∧
loc(y) ∧ in_city(y , z3) ∧ (y 6= z2)

)
∨

∃z1
(
a=fly(x , z1, y) ∧ airplane(x) ∧ airport(z1) ∧ airport(y)) ∨

∃z1,∃z2
(
a=fly(z1, z2, y) ∧ obj(x) ∧ airplane(z1) ∧ airport(z2)∧

loaded(x , z1, s) ∧ airport(y)
)
∨

at(x , y , s) ∧ . . . /* unless the last action makes this fluent false */ . . .

The first drive(x , z1, y , z2) and the first fly(x , z1, y) actions have local effects
on at(x , y ,do(a, s)) since both object arguments of the fluent occur as
arguments of these actions. The second drive(z1, z2, y , z3) and the second
fly(z1, z2, y) actions have global effects on this fluent, since location of all
objects inside a vehicle changes when the vehicle moves to destination.

Local-effect Actions and BATs: Definition
(∀~x∀s∀a). F (~x ,do(a,s))↔ γ+

F (~x ,a,s) ∨ F (~x , s) ∧ ¬γ−F (~x ,a,s), (2)

where ~x is a tuple of object arguments of the fluent F , and each of the γF ’s is
a disjunction of uniform formulas
[∃~z].a = A(~u) ∧ φ(~x , ~z, s), /* a set of variables ~z ⊆ ~u; may be ~x ⊂ ~u */
where A(~u) is an action with a tuple ~u of object arguments, ~z are optional
extra arguments, and φ(~x , ~z, s) is a context condition.

A set of variables ~z in a context condition φ(~x , ~z, s) must be a subset of object
variables ~u. If ~u in an action function A(~u) does not include any z variables,
then there is no ∃~z quantifier.

If not all variables from ~x are included in ~u, then it is said that A(~u) has a
non-local effect. The fluent F has at least one ∀-quantified object argument x
not included in ~u, but it is constrained by φ(~x , ~z, s). F experiences changes
beyond the objects explicitly named in A(~u).

When a vector of object variables ~u contains both ~x and ~z, we say that the
action A(~u) has a local effect.

A BAT is called a local-effect BAT if all of its actions have only local effects. In
a local-effect action theory, each action can change values of fluents only for
objects explicitly named as arguments of the action. How do we know this?

Local effect SSAs with quantifier-free contexts
In a local-effect SSA, consider substitution of a ground action term A(~Bx , ~Bz)
for a variable a in the formula [∃~z].a=A(~x , ~z) ∧ φ(~x , ~z, s).

Applying UNA for action terms yields [∃~z].~x = ~Bx ∧ ~z = ~Bz ∧ φ(~x , ~z, s). Next,
applying FOL equivalence ∃z(z =B ∧ φ(z)) ≡ φ(B) repeatedly for each zi

results in the logically equivalent formula ~x = ~Bx ∧ φ(~x , ~Bz , s). We make the
following realistic simplifying assumption.

Definition
An SSA is essentially quantifier-free if for each ground action α, each context
condition φ(~x , ~z, s) is a quantifier-free formula, after using UNA for actions,
and φ(~x , ~z, s) consists of fluents.
In other words, each of γ+

F (x ,a, s) and γ−F (x ,a, s) can be simplified to a
boolean combination of equalities, inequalities, and fluents.

Example: the SSA for BW are essentially quantifier-free; context conditions
are single fluent.

Most of the examples of SSAs in the planning benchmarks satisfy this
additional condition. Therefore, this is a reasonable syntactic restriction on
the basic action theories.

Example: A simplified BW with local-effects
There is a single action, move(x , y , z), moving a block x from block y to block
z that can be the table. We consider 3 fluents.
clear(x , s), block x has no blocks on top of it;
on(x , y , s), block x is on block y in situation s;
eh(x , s), the height of block x is even in the tower of blocks below x .

The following SSAs are local-effect (with implicit ∀x , y ,a, s at front):
clear(x ,do(a, s))↔ (∃y , z)a=move(y , x , z) ∨ clear(x , s) ∧ ¬(∃y , z)a=move(y , z, x),

on(x , y ,do(a, s))↔ (∃z)a=move(x , z, y) ∨ on(x , y , s) ∧ ¬(∃z)a=move(x , y , z),

eh(x ,do(a, s))↔ (∃y , z)[a=move(x , y , z) ∧ ¬eh(z, s)]∨
eh(x , s) ∧ ¬(∃y , z)[a=move(x , y , z) ∧ eh(z, s)].

Instantiate a with a ground action α=move(C1,C2,C3). What would we get?
clear(x ,do(move(C1,C2,C3), s))↔ (∃y , z)move(C1,C2,C3)=move(y , x , z) ∨

clear(x , s) ∧ ¬(∃y , z)move(C1,C2,C3)=move(y , z, x),

on(x , y ,do(move(C1,C2,C3), s))↔ (∃z)move(C1,C2,C3)=move(x , z, y) ∨
on(x , y , s) ∧ ¬(∃z)move(C1,C2,C3)=move(x , y , z),

eh(x ,do(move(C1,C2,C3), s))↔ (∃y , z)[move(C1,C2,C3)=move(x , y , z) ∧ ¬eh(z, s)] ∨
eh(x , s)∧ ¬(∃y , z)[move(C1,C2,C3)=move(x , y , z) ∧ eh(z, s)].

Applying UNA for actions to (∃y , z)move(C1,C2,C3)=move(y , x , z) yields the
formula ∃y , z(y =C1 ∧ x =C2 ∧ z =C3) which is logically equivalent to (Why?)(
x =C2 ∧ ∃y(y =C1) ∧ ∃z(z =C3)

)
≡ x =C2.

Transformed SSA, Argument set, Characteristic set
Applying UNA for actions and doing simplifications yields transformed SSAs.

clear(x ,do(move(C1,C2,C3), s))↔ (x =C2) ∨ clear(x , s) ∧ ¬(x =C3),
on(x , y ,do(move(C1,C2,C3), s))↔ (x =C1 ∧ y =C3) ∨ on(x , y , s) ∧ ¬(x =C1 ∧ y =C2),
eh(x ,do(move(C1,C2,C3), s))↔ (x =C1)∧¬eh(C3, s) ∨ eh(x , s)∧¬(x =C1∧eh(C3, s)).

The argument set ∆F (read as “Delta") for the fluent F wrt a ground action α is
a set of constants appearing in the transformed SSA for F instantiated with α.

The set ∆clear for the fluent clear(x , s) wrt move(C1,C2,C3) is {C2,C3}. For
the fluent on(x , y , s), ∆on ={〈C1,C3〉, 〈C1,C2〉}. For eh(x , s), ∆eh ={C1}.
The characteristic set Ω (read as “Omega") of a ground action is a set of all
ground atoms subject to change by this action. E.g., for move(C1,C2,C3)

Ω(s) = {clear(C2, s), clear(C3, s),on(C1,C3, s),on(C1,C2, s),eh(C1, s)}.
If block C3 is clear at s, it no longer remains clear after doing move(C1,C2,C3),
but block C2 will become clear.

Use ∆F to instantiate the transformed SSA for F : replace object arguments
of F with constants from ∆F . Obtain the set Dss[Ω] of formulas representing
new values of fluents, e.g., on(C1,C3,do(move(C1,C2,C3),S0))↔

C1 =C1 ∧ C3 =C3 ∨ on(C1,C3,S0) ∧ ¬(C2=C3 ∧ C3 =C2).

The set Dss[Ω] of instantiated SSAs wrt Ω(Sα) is the following : {clear(C2,Sα),
¬clear(C3,Sα),on(C1,C3,Sα),¬on(C1,C2,Sα),eh(C1,Sα)↔ ¬eh(C3,S0)}.

Progression for a Local-effect BAT: General Case
For each fluent F , collect constants where F changes into the argument set
∆F . Progression involves (a) forgetting about all those affected ground fluents
in the initial theory, and (b) computing their new values from SSAs.
The set of these ground fluents is called the characteristic set of α and is
denoted by Ω(s). The set Ω(S0) is all ground fluents to be forgotten.
Let DSS[Ω] denote the instantiation of all SSAs w.r.t. Ω(S0), i.e. the set of

F (~t ,Sα) ≡ ΦF (~t , α,S0),

where F (~t ,Sα) ∈ Ω(Sα) and ΦF is the instantiated right hand-side of the SSA
for fluent F w.r.t. a ground action α.
Theorem
[Liu&Lakemeyer2009, Theor. 3.6] Let D be a local-effect BAT, α a ground
action, and Ω(s) be the characteristic set of α. Let φ be DS0 ∧ DSS[Ω]. Then
the following is a progression DSα

of DS0 w.r.t. α:

DSα
=
∧

UNA ∧ forget(φ,Ω(S0)) (Sα/S0),

where ψ(u/v) is the result of replacing all occurrences of v in ψ by u.
Moreover, using notation from Theorem about forgetting we have:

forget(φ,Ω(S0)) =
∨

A∈M(Ω(S0))

φ[A] (Sα/S0).

This computation can be simplified using irrelevance, which divides formulas
into those which are affected, or not affected by forgetting about P(~C).

Irrelevance
Definition Let P(~C) be an atom, φ be a sentence. P(~C) is irrelevant to φ iff

forget(φ,P(~C)) ≡ φ.
Note that when φ has no occurrences of P(~C), then P(~C) is irrelevant to φ.

For simplicity, let us assume that both an initial theory DS0 and formulas in
DSS[Ω] are a knowledge base (KB) which is a conjunction of clauses, where
each clause is a disjunction of ground literals (called proper+ KB).

To simplify the task of forgetting about a ground atom p, we will rearrange
clauses as follows. Using the distributivity law ((a ∨ p) ∧ (b ∨ p)) ≡ (a ∧ b ∨ p)
one can collect sub-formulas from all clauses in a KB with positive
occurrences of p into a single conjunction φpos. Similarly, using the law
((a ∨ ¬p) ∧ (b ∨ ¬p)) ≡ (a ∧ b ∨ ¬p) one can combine sub-formulas occurring
together with ¬p in clauses of a KB into the conjunction φneg .

Proposition [(Liu&Lakemeyer2009, Prop. 5.3]
Let P(~C) be a ground atom, φpos, φneg , and φirr be sentences to which P(~C)

is irrelevant, and KB be (P(~C) ∨ φpos) ∧ (¬P(~C) ∨ φneg) ∧ φirr . Then,
forget(KB,P(~C)) = (φpos ∧ φirr) ∨ (φneg ∧ φirr) ≡ (φpos ∨ φneg) ∧ φirr .

Examples. forget(P(~C)∧ φirr ,P(~C))=φirr . forget(¬P(~C)∧ φirr ,P(~C))=φirr .

Since Ω(S0) is a set of ground fluent atoms, we apply similar transformations
to DS0∪DSS[Ω] repeatedly to compute progression DSα

linear wrt initial DS0 .

References
Gerhard Lakemeyer and H.J. Levesque: “Evaluation-Based Reasoning with
Disjunctive Information in First-Order Knowledge Bases". KR 2002: pages
73-81 (defines proper+ KBs).
Hector J. Levesque: “A Completeness Result for Reasoning with Incomplete
First-Order Knowledge Bases". KR 1998: pages 14-23 (defines proper KBs).
Fangzhen Lin and Raymond Reiter: "Forget It!", 1994 AAAI Fall Symposium,
Technical Report FS-94-02.
Fangzhen Lin, Raymond Reiter: “How to Progress a Database". Artif. Intell.
1997, vol 92(1-2): pages 131-167.
Yongmei Liu, Gerhard Lakemeyer: “On First-Order Definability and
Computability of Progression for Local-Effect Actions and Beyond". IJCAI
2009: pages 860-866.
Stavros Vassos, Hector J. Levesque: “How to progress a database III". Artif.
Intell. 2013, vol. 195, pages 203-221

