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Syntax of first order language
Definition
A first-order language (or vocabulary, or signature) is specified by

1. a set of n-place function symbols that can be empty, where n ≥ 0 is an
integer representing the number of arguments. A zero-argument function
is called a constant symbol. We use letters f ,g,h possibly with
subscripts to denote function symbols.

2. a set of predicate symbols such that each predicate symbol has a
positive number of arguments (called arity). We use letters P,Q,R
possibly with subscripts to denote predicate symbols.

To build first-order formulas we also use the following symbols:
I variables that we usually denote as x , y , z, . . .
I propositional connectives ¬, ∧, ∨, →, ↔ (not, and, or, if-then, iff)
I quantifiers ∀, ∃ (for all, exists)
I parentheses

In propositional logic, we defined which strings are wffs. We need a similar
definition here. Moreover, we have to define terms built by composition of
function symbols, variables and constants. For example, in arithmetics, we
can compose complex arithmetical expressions out of function symbols +, ·.
In several textbooks, the symbols starting with upper-case letters are
constants, and the symbols starting with lower-case letters are variables.

Terms in first order logic (FOL)
Definition (1) Every variable is a term. (2) Every constant is a term.
(3) If f is n-place function symbol in the language, and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.
According to this definition, terms (or expressions) are strings composed
from constants, variables and function symbols. These strings represent
objects in the universe of discourse.

Examples: if h is unary function symbol, f ,g are binary function symbols, x , y
are variables, c is a constant, then all of the following expressions are terms:

c, x , y ,h(c),h(x),h(y), f (c, c),g(c, c), f (x ,y),g(x ,y), f (y ,x),g(y ,x), f (x ,c),
g(x ,c), f (y ,c),g(y ,c), f (c,x),g(c,x), f (c,y),g(c,y),h(h(c)),h(f (x ,y)),h(g(x ,y)), . . .

Term h(f (c,g(x , y))) can be represented using a binary tree:
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Term formation tree is unique
Definition
A term formation tree associated with the term in the root node is an ordered
finite branching tree T labeled with terms satisfying the following conditions:
I The leaves of T are labeled with those variables or constant symbols

which occur in the root.
I Each non-leaf node of T is labeled with a term of the form f (t1, . . . , tn).
I A node of T that is labeled with a term of the form f (t1, . . . , tn) has

exactly n children in the tree. They are labeled in order with t1, . . . , tn.

Example. The vocabulary of formal arithmetic has only one constant 0, unary
function symbol s representing successor, binary function symbols +, · and
binary predicate symbol =. When we write terms in this language in practice
we write functions +, · as though they were infix operators, even officially they
should be written using prefix notation. In other words, we write (t1 · t2)
instead of ·(t1, t2) and we write (t1 + t2) instead of +(t1, t2).

Exercise: identify all sub-strings which are arithmetical terms in the following
arithmetical expression:

(
( ((x + y) · (x + s(0))) · (y + s(s(0))) ) + s(s(s(0)))

)
.

Here s(x) represents a positive integer number following after the number x ,
e.g., s(0) would represent one, s(s(0)) represents two, and so on. We need
s(x) because there are no other constants in the language. Draw the term
formation tree for this expression.



Motivation for first-order formulas

First order logic (FOL) is expressive enough to show internal
structure of simple English sentences.

Roughly speaking, simple FOL terms are the noun phrases of
first-order languages: constants can be thought of as first-order
counterparts of proper names (such as Bob, Mary), and variables as
first-order counterparts of pronouns (his, its, my) or nouns.

We can then combine our ‘noun phrases’ with our various ‘predicate
symbols’ to form what we call an atomic FOL formula. Intuitively, an
atomic formula is the first-order counterpart of a simple natural
language sentence.

Example: the simple sentence “Bob loves Mary" can be represented
as an atomic formula loves(Bob,Mary) using the binary predicate
“loves" that has two constants “Bob" and “Mary" as its arguments.

Definition of first-order formula
A well-formed FOL formulas are defined inductively similar to terms:

I Let R be n-place predicate symbol (n ≥ 1), and t1, . . . , tn are terms, then
R(t1, . . . , tn) is an (atomic) well-formed formula. (Note that in the last
sentence we need exactly n terms to occupy n argument positions
available in R).

I Let t1, t2 be well-formed FOL terms, then the equality between these
terms (t1 = t2) is also a well-formed formula.

I If F1,F2 are well-formed formulas, then so are (¬F1), (F1 ∨ F2), (F1 ∧ F2),
(F1 → F2), (F1 ↔ F2).

I If v is a FOL variable and F is a well-formed formula, then (∃v)F and
(∀v)F are also well-formed formulas.

Nothing else can be a well-formed formula (wff).

In practice, we often omit parentheses around quantifiers. However, we have
to keep parentheses to indicate scopes of quantifiers. Example: a string
∃x(F1(x) ∨ F2(x)) is a well-formed formula, but ∃x(F1(x)) ∨ F2(x) is not. If in
doubt, keep parentheses!

Formula formation tree is unique
Similarly to propositional logic, we can define a formation tree for any first
order logic formula. The main difference is that now formulas may involve
quantifiers, and each atomic formula is built using terms constructed using
terms formation trees as defined above.

A formation tree for ∀x(¬∃y p(x , y) ∨ ¬∃y p(y , x)), where parentheses around
both occurrences of ∃y in the formula are omitted to avoid clutter:
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Free and bound occurrences of variables
In formulas (∃v)F and (∀v)F , the sub-string F is called the scope of the
quantifier. Notice that it might happen that F does not contain the variable v .

An occurrence of a FOL variable v is said to be bound in a well-formed
formula F if either it is the occurrence of v in a quantifier (∀v), or in a
quantifier (∃v), respectively, or it lies within the scope of a quantifier (∀v)
inside F , of a quantifier (∃v) inside F , respectively.

Otherwise, a FOL variable that is an argument of one of the predicates or one
of the function symbols in F is said to be free in F .
Caution: a quanitified variable is assumed to be bound by the nearest
quantifier, if it is within the scopes of several nested quantifiers over this var.

Examples: in the formula ∀x(¬∃y p(x , y) ∨ ¬∃y p(y , x)) all occurrences of
variables x , y are bound. This is displayed in the formation tree of this formula
since all quantifiers are above all occurrences of variables in this tree.

Examples: in the formula ∀x(¬p(x , y) ∨ ¬∀z p(y , x)) all occurrences of
variable x bound, the only one occurrence of variable z is also bound, but all
occurrences of variable y are free. Notice there are no occurrences of z
within the scope of the quantifier ∀z.
Exercise: find all free and bound occurrences of variables in

∀x
(
∃x( x =y ∧ ∀y∀x(x =y ∨ y =z) )

)
.



Examples: translate simple sentences into FOL
This syntax of FOL allows us to represent internal structure of simple English
sentences.

For example, the English sentence “all humans are mortal” can be written in
FOL as ∀x(human(x)→ mortal(x)) using predicates human(x),mortal(x).

The Greek philosopher Aristotle (384-322B.C.) developed syllogism, a form
of logical argument. One of his well-known arguments “All humans are
mortal. I am a human. Consequently, I am mortal" can be written in FOL
using constant I as follows:

(
∀x(human(x)→ mortal(x)) ∧ human(I)

)
→ mortal(I).

The English sentence “everyone has a mother" can be written in FOL as
∀p∃m(mother(p)=m) using the function symbol mother(x). Propose
FOL-rendering for the sentence “everyone has one and the only one mother".

The sentence “everyone has one and the only one mother" can be written as

∀p∃m
(
(mother(p)=m) ∧ ∀x

(
¬(x =m)→ ¬(x =mother(p))

))
.

Web of beliefs in FOL
FOL might be a language of choice to represent a vast web of beliefs in a
knowledge base about an application domain. Recall “intelligence as
symbol manipulation" hypothesis. We assume that knowledge can be
represented symbolically using “shared concepts" between sentences
and that collectively they represent meaning of all the concepts.

We can consider as an example a sentence "Someone is a bachelor if
and only if there has never been a wedding where that person is the
groom".

Using 1-place predicate bachelor(x), another 1-place predicate
wedding(y), and assuming that y is a wedding event that has an
associated participant who is represented using 1-place function
groom(y), we can represent this sentence in FOL. How?

∀x
(

bachelor(x)↔ ¬∃y
(

wedding(y) ∧ (x =groom(y))
) )

.

Exercise
Consider the following predicates. H(x) means “x is a human". C(x) means
“x is a car". T (x) means “x is a truck". D(x , y) means “x drives y". Using
these predicates, write formulas representing the following statements.
I “Everybody drives a car or a truck".
∀x
(
H(x)→ ∃y(D(x , y) ∧ (C(y) ∨ T (y)) )

)
.

I “Some people drive both"

∃x
(

H(x) ∧ ∃y(D(x , y) ∧ C(y)) ∧ ∃z(D(x , z) ∧ T (z))
)
.

I “Some people do not drive either"

∃x(H(x) ∧ ¬∃y(D(x , y) ∧ (C(y) ∨ T (y)))).

I “Nobody drives both"

¬∃x
(

H(x) ∧ ∃y(D(x , y) ∧ C(y)) ∧ ∃z(D(x , z) ∧ T (z))
)
.

Translate ambiguous sentences into FOL
One of the main strength of FOL comes with its ability to formulate precisely
different readings of ambiguous English sentences where ambiguity arises
due to uncertainty in the scope of quantifiers.

The well-known example, so-called "donkey phrase", was proposed by Peter
Geach (1962): "Everyone who owns a donkey beats it".

To represent this sentence we can use binary predicate owns(p,d) meaning
“a person p owns a donkey d" and binary predicate beats(p,d) (a person p
beats a donkey d). There are several different readings of this sentence.
I “there is donkey (a single poor creature) such that every peasant who

owns this donkey beats it".
I “every peasant who has his own donkey beats his donkey".

Propose how these two different readings can be written in FOL.

The first reading: ∃d∀p(owns(p,d)→ beats(p,d)).

The second possible reading: ∀p∃d(owns(p,d)→ beats(p,d)).



The barber paradox in FOL
FOL was instrumental to clarify the foundations of mathematics, a discipline
where the very basic concept of set turned out to be ambiguous at the end of
XIX century.

This might be hinted with a Barber Puzzle, an overly simplified, but popular
version of Bertrand Russell’s paradox about sets. Russell states it as follows:
“You can define the barber as one who shaves all those, and those only, who
do not shave themselves. The question is does the barber shave himself?"

Formulate this paradox in FOL using 1-place predicate symbol barber(x) and
2-place predicate symbol shaves(x , y) that means “x shaves y".

This puzzle can be written as
∃x
(

barber(x)↔ ∀p(shaves(x ,p)↔ ¬shaves(p,p) )
)

Using the well-defined semantics of FOL, one can prove that negation of this
formula holds no matter how we interpret the predicates in the puzzle.

Take home message: intelligent humans such as mathematicians can be
wrong when they operate with abstract concepts. If we would like our AI
system to reason correctly, its reasoning should be verifiable according to
semantics of FOL. More specifically, the fact whether KB |= Query for a given
KB and Query should be determined based on semantics of FOL.

Goldbach’s conjecture (1742).
“Every even integer number greater than 2 is the sum of two primes" (1.6 · 1018)

Formulate this in FOL using unary predicate symbols Even(x) and Prime(x),
the binary predicate symbol > (use common infix notation), a binary function
symbol + (with usual infix notation), and a constant symbol 2.

∀x
(
(Even(x) ∧ x > 2)→ ∃y∃z(Prime(y) ∧ Prime(z) ∧ x = y + z)

)

This can be written as a formula in the language of formal arithmetics since
the predicates Even, Prime, and > can be defined in terms of s(x),+, ·, and
=. For example Even(x) can be an abbreviation for the formula
∃y(x = y + y). Exercise: define Prime(z) in the language of arithmetics.

Solution: Prime(z) is an abbreviation for
∀x∀y

(
z = x · y → ( (x = s(0) ∧ y = z) ∨ (x = z ∧ y = s(0)) )

)
.

Exercise: identify which occurrences of variables in this string are bound and
which occurrences are free.

In the formula ∃y(x = y + y) the only occurrence of x is free, while all 3
occurrences of y are bound.
Notice that a variable can have both free and bound occurrences in one
formula. For example, in (P(x) ∧ ∀x Q(x)), the first occurrence of x is free,
and the second occurrence of x is bound.

Intuitively, the meaning of a formula with free variables depends on the values
assigned to its free variables. However, no value need to be assigned to a
bound variable to give meaning to the formula.

Semantics of FOL
In propositional logic, a truth assignment interprets a formula. In FOL, we
need a more complicated object called a structure (or FOL interpretation) to
give meaning to strings representing quantified formulas and terms.

Let L be a first-order language, then an L-structureM consists of:
1. A non-empty set D called the domain, or the universe of discourse.

Variables in an L-formula range over D.
2. For each n-ary function symbol f in L, an associated function fM :

Dn 7→ D that maps every n-tuple of elements into a unique element in D.
3. For each n-ary predicate symbol P in L, an associated relation PM ⊆ Dn.

If L contains =, then =M must be the usual equality relation on D.

This definition is not about modeling mathematical notions. Its intention is to
model everyday reality in precise terms so that we can write programs. DBs.

A formula or a term is called closed if it contains no free occurrences of a
variable. A closed formula is called a sentence.

Every sentence becomes either true or false when interpreted by a structure
M (to be explained soon). If a sentence F becomes true underM, then we
sayM satisfies F , orM is a model for F , and writeM |= F . But for a wff
with free object variables, we have to assign values to variables before we
can determine whether a formula is true.

Object assignment
We say that a structure (interpretation)M is finite if the universe D ofM is
finite. Otherwise,M is infinite. We always assume universe D is non-empty.

If a formula F has free variables, then these variables must be interpreted as
specific elements in the universe D before F gets a truth value underM.

Definition. An object assignment σ (read as “sigma") for a structureM is a
mapping from (all) variables to the universe D ofM.

Example: the formula ∃z( z < (x1 + x2) ) is neither true, nor false over the
domain of integers. It all depends on how variables x1, x2 are interpreted. Let
the universe D be a set of integers≥ 0 with the usual arithmetical operations
on them. Under the object assignment σ(x1)=2, σ(x2)=5, σ(xi)=0 for all
other vars, this formula is saying there exists a number less than 7, which is
true. However, if σ(xi)=0 for all i ≥ 0, then this formula is false since there is
no positive integer that is less than 0.

Notice σ can assign same or distinct values to some or all of the variables. In
any case, for each σ, every variable is assigned a single value by σ.

If an object assignment is exactly as σ except that it assigns an element
d ∈ D to variable x , we call it a variant object assignment σ(x 7→ d). By
definition, σ(x 7→ d)(x)=d , or in words, σ(x 7→ d) assigns an element d to x .



Object assignment σ: Example
Consider first order language that includes constants such as Elizabeth,
Charles, William and so on, two 1-place function symbols f (x),m(y), and the
2-place predicate =.

To interpret terms and formulas of this language, structureM consists of a
domain D of people such that each constant represents a person in D. M
interprets f (x),m(y) as the functions that map arguments x , y into their father
and mother, respectively. For example, a person named Elizabeth is the
mother of Charles, who is the father of William.

We would like to establish whether the formula f (x1)=x2 ∧m(x2)=x3 is true
under interpretationM with respect to an object assignment. It depends on
how variables x1, x2, x3 are instantiated by people.

If the object assignment σ′ assigns all variables to the same element William,
this formula is false since William is not the mother of the father of himself.

However, if σ(x1)=WilliamM, σ(x2)=CharlesM, σ(x3)=ElizabethM, and all
other variables are assigned distinct people, thenM interpretation of LHS
under σ is

(
f (x1)

)M
= fM(x1)[σ]= fM(WilliamM)[σ]=CharlesM[σ]=x2[σ].

Also, (m(x2) )
M=mM(x2)[σ]=mM(CharlesM)[σ]=ElizabethM[σ]=x3[σ].

Therefore, with this 2nd object assignment, the given formula is true since σ
maps x3 to the person named Elizabeth.

Basic Semantic Definition: Motivation
Our plan is the following. We are going to define for an arbitrary wff F in a
language L whether it holds under an L-interpretationM when σ assigns
elements from the universe D ofM to all variables. Notation: M |= F [σ].

Subsequently, similar to propositional logic, we are interested in solving the
logical consequence problem for first order logic (FOL), i.e., whether a
QueryFOL formula is entailed from the given knowledge base kbFOL, or in
symbols, kbFOL |=? QueryFOL. The following definition parallels similar
definition in propositional logic.

Definition. We say that a FOL formula F is a logical consequence of a set of
formulas KB, in symbols, KB |= F , iff for all interpretationsM and all object
assignments σ, ifM is a model for KB,M|= KB, thenM satisfies F : M|= F

Similar to propositional logic, this logical consequence problem is equivalent
to deciding whether the conjunction of (

∧
KB) ∧ {¬F} is unsatisfiable. We are

going to discuss later how to use an extended tableau algorithm that deals
with quantifiers to solve (sometimes) the unsatisfiability problem.

With this foresight in mind, we proceed to define precisely whenM is a
model for F under object assignment σ. First, we define recursively over
structure of a term how terms are interpreted. Second, we define recursively
over structure of a formula F , whenM |= F [σ].

(BSD) Basic Semantic Definition: (1) for terms
Since terms are strings built out of sub-terms by applying a function symbol
to sub-terms, the meaning of terms is defined recursively similar to how term
formation trees are defined. Since terms may contain variables, they are
interpreted with respect to (w.r.t.) an object assignment σ.

Definition
LetM be an L-structure, and let σ be an object assignment forM. Each
term t is assigned an element tM[σ] in D with respect to σ as follows.
I If term t is a constant C, then CM is the interpretation of this constant

underM.

I For each variable x , if term t is a variable x , then xM[σ] is an element
mapped by object assignment σ(x).

I For any n-place function symbol f in L, whose arguments are terms
〈t1, . . . , tn〉, interpretation of the term f (t1, . . . , tn) under σ, or in symbols
(f (t1, . . . , tn))M[σ], is an element mapped by the function interpreting f
applied to interpretation of arguments w.r.t. σ, or in symbols,
fM(tM1 [σ], . . . , tMn [σ]).

If t is a closed term, i.e., it contains no variables, then tM[σ] is independent of
σ and so we can use a shorter notation tM.

(BSD) Basic Semantic Definition: (2) for formulas
Recall we associate with σ a family of object assignments σ(x 7→ d): for each
d ∈ D we consider σ(x 7→ d) that maps x into d , but otherwise it is like σ.
For any string in L that is a wff F , we say thatM satisfies F under σ, or in
symbolsM |= F [σ], in the following cases.

(a). M |= P(t1, . . . , tn)[σ] iff 〈tM1 [σ], . . . , tMn [σ]〉 ∈ PM, i.e., an atomic formula
with a predicate symbol P is satisifed byM under σ iff the tuple of its
arguments belongs to relation PM interpreting P.

(b). M |= (s= t)[σ] iff sM[σ] = tM[σ]. Note this follows from the previous
item and the fact that =M is always the equality relation.

(c). M |= ¬F [σ] iff notM |= F [σ], i.e., an interpretationM satisfies ¬F
under σ iffM does not satisfy F under σ. Note that eitherM |= F [σ] or
M |= ¬F [σ].

(d). M |= (F1 ∨ F2)[σ] iff M |= F1[σ] or M |= F2[σ].

(e). M |= (F1 ∧ F2)[σ] iff M |= F1[σ] and M |= F2[σ].

(f). M |= (∀xF ) [σ] iff M |= F [σ(x 7→ d)] for all elements d ∈ D.

(g). M |= (∃xF ) [σ] iff M |= F [σ(x 7→ d)] for some element d ∈ D.
(h). For (F1 → F2), (F1 ↔ F2) use their definitions.



Basic Semantic Definition: Examples
Notice that if a wff F is a sentence, i.e., it has no free variables, then
sometimes we writeM |= F instead ofM |= F [σ], since the object
assignment σ does not matter in this case.

Example. Consider language L that includes only two binary predicate
symbols {�,=}, but has no function symbols. Interpret L-formulas in
L-structureM whose universe D is the set of positive integer numbers and
such that �M (m,n) iff m ≤ n. Consider the following formulas, and explain
whetherM satisfies them or not, and why.
I M |=? ∃x∀y(x � y)
I M |=? ∃y∀x(x � y)
I M |=? ∀x∃y∃z( (x � y) ∧ (y � z) )
I M |=? ∀x∀y∀z((x � y) ∧ (y � z))→ (x � z)

The standard model N for arithmetics has non-negative integers as universe,
sN (n) is n + 1, function symbols 0, ·,+ get their usual meanings. Then,
N |= ∀x∀y∃z(x+z=y ∨ y+z=x) and N |= ∀x∀y∀z( (x + y) · z=(x · z + y · z) ).
But N 6|= ∀x∃y(y + y =x) and N 6|= ∀x∃y∃z(y · z=x → ¬(y =s(0))∧¬(y =x) ).

FOL: satisfiability, validity, equivalences
We use KB to denote a set of formulas in a knowledge base, F1,F2,G to
denote arbitrary wff in FOL.M denotes a structure, σ is object assignment.

Definition F is satisfiable iffM |= F [σ] for someM and σ.

DefinitionM |= KB[σ] iffM |= F [σ] for all F ∈ KB. (We omit σ if KB is a set
of sentences.) Say KB is satisfiable ifM |= KB[σ] for someM and σ.

Definition F is valid , in symbols, |= F , iffM |= F [σ] for allM and σ.

Definition F1 and F2 are logically equivalent , in symbols, F1 ≡ F2, iff for all
M and σ both F1 and F2 are satisfiable byM under σ at the same time.

Definition (logical consequence) KB |= F iff for allM and σ, ifM |= KB[σ],
thenM |= F [σ]. (Usually, both KB and F are sentences, so we can omit σ.)

Caution: the symbols “|=" and “≡" are symbols of the meta-langauge, as
opposed to symbols ¬,∧∨,∀,∃ which are symbols that can occur in formulas.
Write “|=" and “≡" only between formulas, never inside formulas.
Notation: if KB is a finite set of formulas {F1,F2, . . . ,Fn}, then we sometimes
write F1,F2, . . . ,Fn |= G instead of {F1,F2, . . . ,Fn} |= G.

Establish logical consequence using BSD
Example
Prove (∀xF1 ∨ ∀xF2) |= ∀x(F1∨F2) for any wffs F1,F2 from the definition of
logical consequence: KB |= F iff for allM, σ, ifM |= KB[σ], thenM |= F [σ].

LetM be any interpretation, and let σ be any object assignment. Assume
L.H.S. is true, i.e. M |= (∀xF1 ∨ ∀xF2)[σ].

Then, from BSD(d), eitherM |= (∀xF1) [σ] orM |= (∀xF2) [σ].

Case 1: M |= (∀xF1) [σ]. Then, according to BSD(f), for all d ∈ D, we have
thatM |= F1[σ(x 7→ d)]. SinceM satisfies F1, it satisifies the disjunction.

Therefore, for all d ∈ D we haveM |= (F1 ∨ F2)[σ(x 7→ d)].

Consequently, according to BSD(f),M |= ∀x(F1 ∨ F2)[σ], i.e., R.H.S. holds.

Case 2: M |= (∀xF2) [σ] is very similar. It also leads to R.H.S. is true.

Counterexample to logical consequence
Example
What can we say about logical consequence in the opposite direction ?

∀x(F1∨F2) |=? (∀xF1 ∨ ∀xF2), for any wffs F1,F2.

To establish logical consequence we have to use BSD. But, to prove lack of
logical consequence, it is sufficient to show a counterexample. This is
because (LHS) 6|= (RHS), if there is a model for LHS that does not satisfy
RHS. So, we invent an interpretation satisfying LHS but falsifying RHS.

Consider the domain of all people. Let both F1,F2 be atomic formulas
constructed from 1-place predicates. Interpret F1(x) as saying “x is male",
and interpret F2(x) as saying “x is female".

Then, obviously, L.H.S. is true, since under this interpretation, every person is
either male or female.

However, R.H.S. is false since it is false that either all people are male, or all
people are female.

A different counterexample can be constrcuted if we consider positive integer
numbers as universe, and interpret F1(x) as “x is odd", and F2(x) as “x is
even". Every integer is even or odd, but it is not the case that all integers are
even, or all integers are odd.



Establish logical consequence using BSD
Example
Using BSD and definition of logical consequence, prove that for any wff F

¬(∃xF (x)) |= ∀x(¬F (x)).

LetM be any structure and let σ be any object assignment. Suppose L.H.S
is true, i.e.,M |= ¬(∃xF (x)) [σ].

By BSD(c), it is not the case thatM |= (∃xF (x)) [σ] since if negation of a
formula is satisifed, then formula itself is not.

By BSD(g), it is not the case that for some element d of the domain the
formula F (x) is satisfied under object assignment [σ(x 7→ d)], or in symbols,
M |= F (x) [σ(x 7→ d)].

Therefore, for all elements d it is not the case thatM |= F (x) [σ(x 7→ d)].

Then, by BSD(c), for all elements d in the domain we have that
M |= ¬F (x) [σ(x 7→ d)].

From BSD(f) follows thatM |= ∀x(¬F (x)) [σ]. So, we have proved R.H.S.

The opposite direction ∀x(¬F (x)) |= ¬(∃xF (x)) also holds and can be
similarly proved. Therefore, ∀x(¬F (x)) ≡ ¬(∃xF (x)).

Logically equivalent formulas: Part 1
Let F (x),G(x) be FOL well-formed formulas with a free variable x . Let B be a
FOL well-formed formula without free occurrences of x . Let A(x , y) be a FOL
wff with free variables x and y .
The following equivalences can be proved from BSD. The formulas with
implication are valid. Note that if |=(F → G), then F |= G.

∀xF (x) ≡ ¬∃x¬F (x) ∃xF (x) ≡ ¬∀x¬F (x)

∀x∀y A(x , y) ≡ ∀y∀x A(x , y) ∃x∃y A(x , y) ≡ ∃y∃x A(x , y)

∃x∀y A(x , y)→ ∀y∃x A(x , y) /* one direction; to be discussed soon */

(∃xF (x) ∨ B) ≡ ∃x(F (x) ∨ B) (∀xF (x) ∨ B) ≡ ∀x(F (x) ∨ B)

(B ∨ ∃xF (x)) ≡ ∃x(B ∨ F (x)) (B ∨ ∀xF (x)) ≡ ∀x(B ∨ F (x))

(∃xF (x) ∧ B) ≡ ∃x(F (x) ∧ B) (∀xF (x) ∧ B) ≡ ∀x(F (x) ∧ B)

(B ∧ ∃xF (x)) ≡ ∃x(B ∧ F (x)) (B ∧ ∀xF (x)) ≡ ∀x(B ∧ F (x))

If KB |= B then |=(KB → B) /* similar to propositional logic */

Logically equivalent formulas: Part 2
Let F (x),G(x) be FOL well-formed formulas with a free variable x . Let A,B
be FOL well-formed formulas without free occurrences of x . The following
equivalences can be proved directly from BSD.

∀x(A→ G(x)) ≡ (A→ ∀xG(x))
∀x(F (x)→ B) ≡ (∃xF (x)→ B)

(∃x(F (x) ∨G(x)) ≡ (∃xF (x) ∨ ∃xG(x))
∀x(F (x) ∧G(x)) ≡ (∀xF (x) ∧ ∀xG(x))

∀xF (x) ∨ ∀xG(x))→ ∀x(F (x) ∨G(x)) /* one direction only, why? */
∃x(F (x) ∧G(x))→ (∃xF (x) ∧ ∃xG(x)) /* one direction only, why? */

∀x(F (x)↔ G(x))→ (∀xF (x)↔ ∀xG(x)) /* one direction only */
∀x(F (x)↔ G(x))→ (∃xF (x)↔ ∃xG(x)) /* one direction only */

∃x(F (x)→ G(x)) ≡ (∀xF (x)→ ∃xG(x))
(∃xF (x)→ ∀xG(x))→ ∀x(F (x)→ G(x)) /* one direction only */

Formulas with Implication in One Direction only

We can easily prove ∃x(F (x)→ G(x)) ≡ (∀xF (x)→ ∃xG(x)) by
doing logically equivalent transformations., e.g., from LHS to RHS.
∃x(F (x)→ G(x)) ≡ ∃x(¬F (x) ∨G(x)) ≡ (∃x¬F (x) ∨ ∃xG(x)) ≡
¬∀x F (x) ∨ ∃x G(x)) ≡ (∀x F (x))→ (∃x G(x)).

Exercises. Explain briefly why implication would not work in the
opposite direction: provide a counter-example.
∀x(F (x) ∨G(x))→ (∀xF (x) ∨ ∃xG(x))
∀x(F (x)→ G(x))→ (∀xF (x)→ ∀xG(x))
∀x(F (x)→ G(x))→ (∃xF (x)→ ∃xG(x))
∀x(F (x)→ G(x))→ (∀xF (x)→ ∃xG(x))



Substitution in terms and in formulas
Definition Let u, t be terms. Notation t(u/x) is the result of replacing all
occurrences of x in t by u. Notation F (u/x) is the result of replacing all free
occurrences of x in F by u.

Theorem For each interpretationM and each object assignment σ,
(t(u/x))M[σ] = tM[σ(x 7→ m)],

where m is a domain element representing uM[σ].

Warning: substitution in formulas can go wrong. Let F be ∀y¬(x = y + y).
This says “x is odd". But substitution F (x + y/x) is ∀y¬(x + y = y + y).
This does not say “x + y is odd" as desired, but instead for any instantiation
of the variable x , it is false. To see why, consider its equivalent rewriting
¬∃y(x + y = y + y) and notice if x =y , then (x + y = y + y).
The problem is that y in the term x + y got caught by the quantifier ∀y . To
avoid this rename y to a fresh variable z. This motivates an extra condition.

Definition A term t is freely substitutable for x in F iff for every variable y that
occurs in t no free occurrence of x in F is in a subformula of F of the form
∀yG or ∃yG. (Note to avoid collisions all bound variables can be renamed.)

Theorem If t is freely substitutable for x in wff F , then for all interpretations
M and all object assignments σ,M |= F (t/x)[σ] iffM |= F [σ(x 7→ m)],
where m is a domain element representing tM[σ].
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