TORONTO METROPOLITAN UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPS 420
MIDTERM
WINTER 2024

INSTRUCTIONS

- This exam is 120 minutes long.
- This exam is out of 50 and is worth 25% of the course mark.
- This is a closed book exam. However, one double-sided letter-sized crib sheet is allowed.
- This exam is double-sided and has 10 pages including this front page. The last 2 pages are blank. Therefore there are 7 pages of questions: pages 2 to 8 inclusive.
- Please answer all questions directly on this exam. If you need extra space to finish answering questions, please do so on pages 9 and 10 and indicate very clearly on the original page of each question on which page the rest of your answer can be found.

PART A - GRAPH THEORY - 25 MARKS

A1 Euler and Hamiltonian Circuits (6 marks)

a) Give a Euler circuit starting at vertex 0 for the graph above, or explain why this graph does not have a Euler circuit. If you are giving a circuit, just list the edges in order.
b) Give a Hamiltonian circuit starting at vertex 0 for the graph above, or explain why this graph does not have a Hamiltonian circuit. If you are giving a circuit, just list the edges in order.

A2 Matrices in Graph Theory (5 marks)

a) On the diagram on the right, draw the directed graph G described by the adjacency matrix on the left (i.e. add the edges in G)

	0	1	2	3
0	1	1	0	1
1	1	0	0	0
2	1	1	1	0
3	0	0	0	0

(1)
(2)
b) Fill out the matrix A below which is defined as follows:
$A(i, j)=$ number of walks of length 2 from vertex i to vertex j in the graph G.

a) Defining the following simple connected graphs for $\mathrm{n} \geq 3$

- The complete graph K_{n} is the graph with n vertices and an edge between every two distinct vertices
- The cycle graph C_{n} is the graph that consists of a single cycle with n vertices
- The star graph S_{n} is the tree with 1 internal node and n leaves
- The wheel graph W_{n} is the graph formed by adding a vertex to C_{n} and an edge between that new vertex and each of the vertices of C_{n}

Draw the graphs (vertices and edges do not need to be labelled):

K_{3}	C_{3}	$\mathrm{~S}_{3}$	$\mathrm{~W}_{3}$
$\mathrm{~K}_{4}$	C_{4}	$\mathrm{~S}_{4}$	$\mathrm{~W}_{4}$
$\mathrm{~K}_{5}$			

b) What is the relationship between $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$, and W_{n} ?
c) For a simple connected graph G with set of vertices $V(G)$ and set of edges $E(G)$, define:

- The distance $d(v, w)$ between two vertices v and w is the length (number of edges) of the shortest walk in G connecting v and w .
- The eccentricity $e(v)$ of a vertex v is the longest distance between v and another vertex of G :

$$
e(v)=\max \{d(v, w) \mid w \in V(G)\}
$$

- A center of G is a vertex v of G with minimal eccentricity.
- The radius $\rho(G)$ of G is the eccentricity of one of G's centers:

$$
\rho(\mathrm{G})=\min \{\mathrm{e}(\mathrm{v}) \mid \mathrm{v} \in \mathrm{~V}(\mathrm{G})\}
$$

- The diameter $\delta(G)$ is the longest distance between two vertices of G : $\delta(\mathrm{G})=\max \{\mathrm{d}(\mathrm{v}, \mathrm{w}) \mid \mathrm{v}, \mathrm{w} \in \mathrm{V}(\mathrm{G})\}=\max \{\mathrm{e}(\mathrm{v}) \mid \mathrm{v} \in \mathrm{V}(\mathrm{G})\}$

For the graph G underneath:
i. Circle all the centers of G on the diagram
ii. \quad Radius $\rho(\mathrm{G})=$
iii. \quad Diameter $\delta(\mathrm{G})=$
iv. Give one of the walks (i.e. list the vertices of the walk in order) that is the length of this diameter:

d) For the special graphs defined in a) when $\mathrm{n} \geq 3$, give the radius and diameter as functions of n.

Graph G	K_{n}	C_{n}	S_{n}	W_{n}
Radius $\rho(\mathrm{G})$				
Diameter $\delta(\mathrm{G})$				

PART B - SEQUENCES, RECURRENCE RELATIONS - 10 MARKS

Given the sequence a_{n} defined with the recurrence relation:

$$
\begin{aligned}
& a_{0}=3 \\
& a_{k}=5 a_{k-1}+2 k \text { for } k \geq 1
\end{aligned}
$$

B1 Terms of the Sequence (5 marks)
Calculate $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$
Keep your intermediate answers as you will need them in the next question.

B2 Iteration (5 marks)

Guess a concise formula for a_{n} that uses the sum (Σ) and/or product (Π) notation.

PART C - INDUCTION - 15 MARKS

Given the sequence b_{n} defined recursively as:
$\mathrm{b}_{0}=3, \mathrm{~b}_{1}=7$
$b_{k}=3 b_{k-1}-2 b_{k-2}$ for $k \geq 2$
You will now prove by strong induction that a solution to this sequence is $b_{n}=2^{n+2}-1$.
No other method is acceptable.
Be sure to lay out your proof clearly and correctly and to justify every step.

C1 Problem Statement (2 marks)

The conjecture that you are proving, is expressed symbolically in the form $\forall \mathrm{n} \in \mathrm{D}, \mathrm{P}(\mathrm{n})$.

- (1 mark) What is the set D ?
- (1 mark) What is the predicate function $\mathrm{P}(\mathrm{n})$?

C2 Base Cases (4 marks) Prove your base cases here:

C3 Inductive step setup (3.5 marks)

- (2 marks) State the assumption in the inductive step and identify the inductive hypothesis.
- (1.5 marks) State what you will be proving in the inductive step.

Finish your proof here. Be sure to justify every step, particularly why the recursive definition can be applied and where the inductive hypothesis is applied.

THIS PAGE IS INTENTIONALLY LEFT BLANK AND CAN BE USED FOR ROUGH WORK OR TO CONTINUE ANSWERING AN EARLIER QUESTION.

WORK ON THIS PAGE WILL ONLY BE GRADED IF SPECIFICALLY REQUESTED ON ONE OF PAGES 2 TO 7.

THIS PAGE IS INTENTIONALLY LEFT BLANK AND CAN BE USED FOR ROUGH WORK OR TO CONTINUE ANSWERING AN EARLIER QUESTION.

WORK ON THIS PAGE WILL ONLY BE GRADED IF SPECIFICALLY REQUESTED ON ONE OF PAGES 2 TO 7.

