Proper Open World Planning
Mikhail Soutchanski

Toronto Metropolitan (formerly Ryerson) University,
Toronto, ON, M5B 2K3, Canada
mes (at) cs.torontomu.ca
https://www.cs.torontomu.ca/mes/

Abstract

In classical planning and conformant planning, it is assumed
that there are finitely many named objects given in advance,
and that only they can participate in actions and in fluents.
This is the Domain Closure Assumption (DCA). However,
there are realistic open-world deterministic planning prob-
lems where the set of initially given objects changes as plan-
ning proceeds: new objects are created, and old objects cease
to exist. These problems are particularly challenging when
knowledge is incomplete. We formulate the bounded proper
planning (BPP) problem in first-order logic, assume an ini-
tial incomplete theory is a finite consistent set of fluent lit-
erals, consider a special form of weakly context free action
theories, impose an integer upper bound on the length of the
plan, and propose to organize search for a plan over sequences
of actions that are grounded at planning time. In contrast to
numeric or generalized planning problems, where each state
is a finite set, in the BPP each state is associated with in-
finitely many infinitely sized first order models. We show
how a planner can solve the BPP problem by using a domain-
independent heuristic that guides search over sequences of
actions. We discuss the differences between our approach and
the previously explored formulations of the planning problem

1 Introduction

This is a shorter revised version of the paper that appears as
(Soutchanski and Liu 2025). Our focus here is on less formal
explanation of (Soutchanski and Liu 2025) and on providing
experimental data to illustrate our approach.

We study deterministic planning problems when there are
numerical variables, when knowledge is incomplete, and
when the actions can create new objects (not mentioned ini-
tially) or possibly destroy objects that participated at the pre-
vious steps of planning. To the best of our knowledge this di-
rection has not been explored before. We formulate a plan-
ning problem in a first order (FO) language, since this al-
lows us to leave unmentioned the specific details that are not
known. For simplicity, we do not consider sensing actions
(they can be included as in (Soutchanski 2000, 2001)).

This paper is structured as follows. In Section 2 we re-
view briefly the situation calculus and Reiter’s basic action
theories. In Section 3 we consider a special case of an ac-
tion theory that is suitable for defining the class of planning
problems (with incomplete knowledge) that we would like
to solve. In the next Section 4 we consider our planner and
experimental data collected from our preliminary implemen-
tation. Finally, in Section 5 we discuss the previous related
work and then conclude.

2 The Situation Calculus

The readers who are familiar with the situation calculus
can skip this section. The situation calculus (SC) is a log-
ical approach to representation and reasoning about actions
and their effects. It was introduced in (McCarthy 1963; Mc-
Carthy and Hayes 1969) to capture common sense reason-
ing about the actions and events and it was subsequently re-
fined by Reiter (Reiter 2001) who introduced the basic ac-
tion theories. Unlike the notion of state that is common in
model-based planning, SC is based on the situation, namely
a sequence of actions, which is a concise symbolic repre-
sentation and a convenient proxy for the state in the cases
where all actions are deterministic (Levesque, Pirri, and Re-
iter 1998; Lin 2008).

We use variables s, s’, s1, so for situations, variables a, a’
for actions, and z,y for tuples of object variables. The
constant .Sy represents the initial situation, and the suc-
cessor function do : action X situation — situation,
e.g., do(a,s), denotes situation that results from doing
action a in previous situation s. The terms o,0’ de-
note situation terms and A;(Z), or «, i, ws,qa’, repre-
sent action functions and action terms, respectively. The
shorthand do([a, -+ , @], Sp)) represents the situation
do(ay, do(- -+ ,do(ay, Sp) - - - ) resulting from the execution
of actions v, -+ - , ay, in Sy. The relation ¢ C o’ between
situations terms o and ¢’ means that ¢ is an initial subse-
quence of ¢o’. Any predicate symbol F(Z,s) with exactly
one situation argument s and possibly a tuple of object argu-
ments Z is called a (relational) fluent. Without loss of gener-
ality, we consider only relational fluents. A first-order logic
formula v (s) composed of fluents, equalities, and situation-
independent predicates is called uniform in s if all fluents in
1) mention only situation s as their situation argument, and
1(s) has no quantifiers over the situation variables.

The basic action theory D (Reiter 2001) is the conjunc-
tion of the following classes of axioms D=3 AD4; ADgy, A
Duna N Dg,, where X are foundational axioms characteriz-
ing situations as sequences of actions, Dgs describe effects
and non-effects of actions (one axiom per fluent), D, spec-
ify action preconditions (using predicate poss(a, s), i.e., ac-
tion a is possible in situation s, one axiom per action), Dg,
include an incomplete logical theory about what is true ini-
tially in the situation Sy, and D, are the unique name ax-
ioms (UNA) saying that differently named actions and ob-
jects are actually different.

In the case of deterministic planning, it helps to con-
sider the differences how a planning domain can be
represented in the Planning Domain Definition Language



(PDDL) (Haslum et al. 2019) vs how it is represented
in a BAT. For example, consider the well known Blocks
World. It can be formulated in PDDL with a single action
move(z,y, z), or with the following 3 different actions:
move-b-to-b(x,y,z) move block z from the block y to
another block z, move-t-to-b(x,y) move block x from the
table to the block y, move-b-to-t(z,y) move block = from
the block y to the table. As usual, clear(z, s) means that
there is nothing on the top of block x, and on(z, y, s) means
that block = is immediately on the top of another block y.
To illustrate the syntactic differences consider the following.

move-b-to-b
: parameters (70X ?bY 7bZ)
: precondition (and (clear 7bX) (clear 7b2)
(on 76X ?bY) (not (=70Y 702)))
(and (not (clear 7bZ)) (not (on 76X 7bY))
(on 76X 70Z) (clear 7bY))

(: action

: effect

)

In SC, there are a successor state axiom (SSA) that spec-
ifies all the effects of actions on a fluent on(z, z, s) and a
separate precondition axiom for action move-b-t0-b(x,y,z).

Va,y, z, 8. poss(move-b-to-b(x,y,z),s) <
clear(z,s) A clear(z,s) ANon(z,y,s) Nx # z
/* SSA for fluent on(zx, z, s) */
Vz,z,a,s. on(z,z,do(a,s)) <
Jy(a=move-b-to-b(x,y, 2))V a=move-t-to-b(xz,z) V
on(z, z,s) A ~Jy(a=move-b-to-b(x, z,y)) N
—(a=move-b-to-t(z, z)).

As we see, PDDL is action-centered while Situation Cal-
culus is fluent-centered. It turns out that declarative seman-
tics of PDDL STRIPS fragment can be specified in the situa-
tion calculus (Lin and Reiter 1997). For our illustrative pur-
poses here, it is sufficient to say that PDDL and SC are based
on similar underlying intuitions about actions and their ef-
fects. However, in SC one can consider a more general class
of action theories where the number of participating objects
can be left unspecified and initial knowledge Dg, can be left
incomplete because Dg, can be formulated in a simple frag-
ment of first order logic, and therefore some details can be
left unmentioned. This allows us to formulate a new inter-
esting planning problem as explained in the next section.

3 Proper Basic Action Theories

As an example, we consider a new variation of the plan-
ning problem proposed in (Fuentetaja and de la Rosa 2016).
There are trays with pizza slices. There are people who want
pizza. The problem is how to cut some of the available slices
and serve pizza to some people so that they will get equally
sized slices. It is realistic to solve this problem even if the
total number of people, and the number of trays and slices
are not given. For simplicity, assume that the diameters of
all pizzas are the same. Each continuous pizza piece (I, ) is
characterized with the two angles: the left angle [ wrt a fixed
chosen axis, and the right angle » which is always greater
than the left angle. To say that in situation s on tray, there
is a pizza slice with the angles pair (I, r), we use logical

fluent available(tray,,!,r,s). The angles can be any (ra-
tional) numbers in the range from 0 to 360. There are sit-
uation independent predicates person(p) and tray(t), but
there are no upper bounds on the number of people and trays,
and for simplicity, it is assumed that each tray holds initially
only one slice. In addition, there are fluents served(p, s),
a person p was served pizza in s or in a previous situa-
tion, and angleSize(p, n, s) meaning that a person p has a
slice with size n in situation s, where n is the difference
between the right and left angles. There are two actions:
serve(t, p,l,r), serve a person p a slice (I,r) from a tray
t,and cutHalf(t,1,r), on a tray ¢ cut a slice ([, r) into two
equal halves that remain on the same tray ¢. The first half has
its angles from [ to 0.5- (I+7); in the second half angles vary
between 0.5 (I+ ) and 7. This action destroys a previously
available slice, and produces two smaller slices.

We consider a special form of the basic action theory
(BAT) D (Reiter 2001). We illustrate all classes of axioms
with our example. (For brevity, variables Z, a,s are implic-
itly V-quantified).

Dg, is a set of first-order (FO) sentences whose only sit-
uation term is the initial situation Sy. The syntactic form of
Dg, is motivated by a proper KB introduced in (Levesque
1998). More specifically, we assume that Dg, is a con-
sistent finite set of ground fluent literals, i.e., there are
some facts that are true initially and there are some other
facts that are initially false. Dg, generalizes databases (and
ABox in description logics) by allowing incomplete knowl-
edge about some of the elements of the application do-
main: if some fluent literal is not mentioned, then the closed
world assumption (CWA) does not apply, and this literal is
treated as unknown. In addition, Dg, includes usual equal-
ity axioms & (reflexivity, symmetry, transitivity, substitution
of equals for equals) and therefore Equality Theorem ap-
plies (Cook and Pitassi 2022). Moreover, as proposed in
(Levesque 1998), Dg, is formulated in a standard first order
logic language with a countably infinite set of (object) con-
stants {C, Cy, ...}, and no other function symbols. These
constants satisfy a set of equality axioms and the set of
UNA formulas {C; # C; | ¢ # j}. Informally speaking,
the purpose of these constants is to supply enough entities
to answer correctly quantified queries, since as proved in
(Levesque 1998) it is not sufficient to consider only con-
stants mentioned in a query or in a given set of fluent literals.
Informally speaking, countably many constants are needed
to answer correctly queries with arbitrary many quantifiers.
However, from Theorem 4 in (Levesque 1998) follows that
the constants mentioned neither in the initial theory, nor in a
query are indistinguishable for reasoning purposes, and one
can pickup any one constant as a representative when an-
swering a query with single quantifier, or m constants to an-
swer correctly a query with m quantifiers. Therefore, if there
is an integer bound on the plan length, every action can cre-
ate at most finitely many objects, and, as usual, the BAT D
includes only finitely many axioms, then only finitely many
queries about finitely many objects may ever be considered
in the process of planning, and the planning algorithm may
ever need only finitely many constants.

Using the logically equivalent transformations, our proper



Ds, can be written as a finite set of implications e — p,
where e is a quantifier-free formula whose only predicate is
equality, and p is a fluent literal whose arguments are distinct
variables. Recall that the domain closure assumption (DCA)
for objects (Reiter 1980) means that the domain of interest is
finite, the names of all objects in Dg, are explicitly given as
a finite set of constants C1,Cs, ..., Ck, and for any object
variable x, Vz is understood as Vo (x =C Ve =CaV.. Vo=
Ck ). We do not include DCA.

For example, we consider the following proper initial the-
ory where the constants start with an upper-case letter; we
use them instead of symbols C;, C; to improve readability.
Vp((p:Ken Vp=DBobV p=>Sue) — person(p))

Vit (t=T1 Vit=T5V t=T3) — tT‘CLy(t))

Vi((t=Ty Vi=Ta Vit=T;3) — —\person(t))

Vp((p=KenV p=BobV p=Sue) — —\tray(p))
Vp((p=KenV p=DBobV p=Sue) — ﬁserved(p,So))

Ve, l,r((t=T1 ANl=0Ar=100) — available(t,!, T,SO))
Vi, L, r((t=T> ANl=10 A r=40) — —available(t,, T,SQ)).
Since we do not include DCA for objects, there might be
infinitely many different infinitely-sized models of Dg,
where the pizza slices have different angles. According to
Ds,, it is known that the tray 77 holds the specific slice with
the angles between 0 and 100, the tray 7> does not have
a slice with a size between 10 and 40, but it is not known
if T, has any other slices, and nothing is known about the
pizza slices on the tray 73, or on any other trays. For people
mentioned in Dg,, it is known they were not initially served,
but nothing is known about any other people not mentioned
in Dg,. Thus, every logical model of Dg, includes facts
mentioned above, and a combination of other facts. When
planning for what specific instantiated action to execute
next, note it should be possible wrt all models of Dg, .

Dap is a set of action precondition axioms
poss(A(Z), s) <> 4(Z, s),

where poss(a,s) is a new predicate symbol that means
an action a is possible in situation s, II4(Z,s) is a for-
mula uniform in s, and A is an action function. In this
paper, we consider a special case, when I14(Z,s) is an
extended conjunctive query, e.g., see (Chandra and Merlin
1977; Abiteboul, Hull, and Vianu 1995). An extended
conjunctive query (ECQ) is of the form 3Z¢(Z, i), where
¢ is a conjunction of positive literals, safe dis-equalities,
that is, dis-equalities (#£) between variables or variables
and constants, and safe comparisons, that is, arithmetical
comparisons (<, >) between two variables or variables and
constants, such that each dis-equality variable, and each
comparison variable appears in at least one positive literal in
¢. The following are precondition axioms for our example.

poss(serve(t,p,l,r),s) < tray(t) A person(p) A

available(t,l,r, s),

i.e., action serve(t,p,l,r) is possible in s, if ¢ is a tray, p is
a person and on a tray ¢ there is a slice available such that
its angles are between [ and r.

poss(cutHalf(t,1,7),s) > available(t,l,r,s) Ar >,
i.e., action cutHal f(t,1,r) is possible in situation s, if there
is a slice (I, r) available on a tray ¢ in s and its right angle
r is greater than its left angle /. It is proved in (Soutchanski

and Liu 2025) that ECQ queries can retrieve at most finitely
many distinct tuples in any situation s, and therefore each
ground situation has at most finitely many successors. This
is important for our implementation: see below.

It is easy to see that the actions [cutHalf (11,0, 100),
serve(Ty, Bob,0,50.0), serve(Ty, Sue, 50.0,100.0)]  are
consecutively possible wrt all models, including those
infinite models which have countably many trays and
slices. They result in ground situation ¢ where the goal
formula Ipy, pa, n(served(pr, o) A served(ps, o) A p1 #
p2 A angleSize(p1,n,0) A angleSize(pa,n,o)) holds.
However, if Dg, does not include any statements about
fluent available(t,l,r,Sy), or if it includes only the fact
that there is no available slice with the angles between 10
and 40 on the tray T5, then this subtle modification has
significant consequences. Namely, there is no sequence
of actions possible in all models that leads to a ground
situation o, where the goal formula holds. Notice the goal
formula is an extended conjunctive query.

Let D¢, be a set of successor state axioms (SSA):
F(z,do(a,s)) <> v (%, a,8) V F(Z,8) A 5 (Z,a,8),
where T is a tuple of object arguments of the fluent F,
and each of the vz’s is a disjunction of uniform formulas
[Fz].a = A(@) A ¢(Z, Z, s),where A(@) is an action with
a tuple @ of object arguments, ¢(Z,Zz,s) is a context
condition, and Z C « are optional object arguments. If @ in
an action function A(@) does not include any z variables,
then there is no optional 3z quantifier. We introduce weakly
context free (WCF) successor state axioms in this paper,
see a formal definition in (Soutchanski and Liu 2025).
They are different from local effect actions where the action
arguments « include fluent’s object arguments z, z C u,
e.g., see (Liu and Lakemeyer 2009). In contrast, in WCF
axioms, some of the fluent arguments are not directly
determined from the action itself, but are computed using
a situation independent functions with fixed interpretation.
We consider both context-free local effect and weakly con-
text free SSAs. The SSAs in our example are the following:
served(t,p,do(a,s)) + 33r(a=serve(t,p,l,r)) V
served(t,p, s),
angleSize(p,n,do(a, s)) <+ EilElr( a=serve(t,p,l,1) A
n=(+r)) VangleSize(p,n,s),
available(t,l', 1, do(a, s)) <
J3r(a=cutHalf (t,1,r) NI'=I AT =0.5-(1+71))V
J3r(a=cutHalf (t,1,r) ANI'=0.5-(L+7) A1/ =71)V
available(t,l,r,s) A
a # cutHalf (t,1,7) A —-3Ip(a=serve(t,p,l,r),
where n = (I 4 r) is a function (semantic attachment as in
(Weyhrauch 1980)) that computes the new value n for fluent
angleSize in the next situation that results from performing
action serve(t,p,l,r) in situation s. Similarly, 0.5 - (I + )
is a situation-independent function that computes the new
left angle (right angle, respectively) when an action cuts an
available slice in half. We say that cut Half (¢, 1, r) actions
destroy a previously available object, that is a slice with the
angles between [ and 7, and also create two new objects,
namely, a new slice with the angles between [ and 0.5(1+ ),
and another slice with the angles between 0.5(1 + ) and r.



There are two main reasoning mechanisms in SC. One
of them relies on the regression operator (Waldinger 1977;
Reiter 1991), and another mechanism called progression is
responsible for reasoning forward, where after each ground
action « the initial theory Dg, is updated to a new theory
Ds,_, (Lin and Reiter 1997). We focus on progression

In general, progression Dg_ is defined in second-order
logic (Lin and Reiter 1997). However, in this paper, we con-
sider a special case of proper Dg, in the form of a finite set of
ground fluent literals, which we call a finite grounded proper
initial theory (FGP) Dg, . In our special case of weakly con-
text free SSAs, and local effect context free SSAs, gener-
alizing the results from (Liu and Levesque 2005; Liu and
Lakemeyer 2009) one can show that the progression of Dg,
wrt o, P(Dg,, o), remains in first order logic, more specif-
ically, it remains a FGP theory, and moreover, it can be ef-
ficiently computed. We introduce convenient abbreviations
(motivated by notation from (Petrick and Bacchus 2004)).

Let C' be a tuple of constants taken from {Cy, Cs, .. .}. For

a predicate P, we let KP denote {C | P(C) € Dg,}, the
set of tuples where P is known to be true and K—P for

{C' | =P(C) € Dg, }, tuples where P is known to be false.
Then the progression of Dg, wrt o, P(Dg,,«) can be
computed for each fluent F' as follows:
KF = KF =y (a) Uv(a),
K-F = K-F —vi(a) Uyp(a).
Note the set ’y}' () includes tuples for which fluent becomes

true thanks to «, v (@) are tuples for which fluent becomes
false due to . P (I, ) remains a first order logic formula.

Informally speaking, for those new constants (not men-
tioned in Dg,) which are arguments of a fluent literal that
enters P(Dg,, ), one can say that they represent created
objects, while for the constants that previously occurred in
Ds,, but are no longer mentioned in progression, one can
say that they represent objects destroyed by «. In the lat-
ter case, since the constants (representing objects that cease
to exist) no longer occur in progression, there is no need to
keep them, unless these objects will be created anew, and
then the constants representing them will occur again in a
future set of fluent literals.

If the goal formula is ECQ, our BAT provides the prereq-
uisites for open-world planning without DCA. We say a BAT
is proper, if it satisfies all the conditions in this section. The
bounded proper planning (BPP) problem includes an upper
bound N on the plan length and requires to find a ground
situation o where the goal formula is true.

4 Solving Bounded Proper Planning (BPP)

Problem

The BPP problem differs from previously explored plan-
ning problems since there are infinitely many infinitely sized
models of Dg, due to incomplete knowledge. After each
step of progression, new constants can appear in Dg_ that
never appeared there before (objects were created), and
some of the constants that were mentioned previously may
no longer belong to Dg_ (objects were destroyed).

It turns out that the BPP problem can sometimes be solved
using an improved version of the well-known domain in-

dependent heuristic developed for the Fast Forward planner
(FF) (Hoffmann and Nebel 2001; Bryce and Kambhampati
2007). See the algorithms in pseudo-code and the details
about our implementation in (Soutchanski and Young 2023;
Soutchanski and Liu 2025).

The key idea of the planning algorithm is that search is ac-
tually organized over situations (sequences of actions) that
serve as convenient symbolic proxies for FGP theories (and
their infinite models). Our planner keeps in memory situa-
tions only, and recomputes progressions at run time from the
initial theory Dg,. An alternative implementation could also
keep progressions in a priority queue. The proposed algo-
rithm is sound and complete; it terminates because there are
only finitely many ground situations with bounded length.
It relies on the fact that for each situation there are finitely
many actions possible. The planning algorithm is lifted,
since possible actions are determined at run-time when ex-
panding the current situation to compute its successors. In
all experiments below, we set the upper bound N to 100.

plG |plA | p2G | p2A |p3G |p3A [p4G |p4A | pSG | pSA
5 151 19317|5 5 60 |3 3 — 1249
14.6 [89.7166.0 |13.1|14.8|22.4(145]145|— |59.8

p6G [ pbA |p7G |p7A |p8G |p8A [p9G |p9A [pl0G pl10A
5 67 |5 9 93175 9317|5 101475
12.0120.9 (9.1 [64.7]69.216.265.8|13.3|425411.2

Table 1: Addition problems p1-p5, p6-p10: Number of situ-

99 93

ations expanded and time (sec) rounded to 1 digit after .

plG |plA |p2G | p2A | p3G |p3A [p4G |p4A | pSG | pSA
5 5 5 5 5 5 5 5 5 5
14.5114.612.0(12.0 |14.8 [15.0|14.9 |14.8 [14.9|15.0

p6G [pbA |p7G |p7A |p8G |p8A [pIG |p9A [pl10G pl0A
5 5 5 6 5 5 5 5 5 6
12.0(12.5(9.1 |30.8|15.0|15.0 [12.1 |12.1|10.4|39.7

Table 2: Multiplication problems p1-p5, p6-p10 solved using
Greedy (G) or A* search (A).

Our planner calls a random number generator to choose
between the two priority queues: the queue “all” includes
all successors of explored situations, and the queue “useful”
includes only situations deemed to be useful at the stage of
counting relevant easiest actions in a planning graph when
our reachability algorithm back-chains from the final layer
with the goal atoms to the first fluent layer that represents a
state produced by an evaluated action. The easiest relevant
actions from the 1st fluent layer together with situation lead-
ing to the 1st fluent layer form situations that are inserted
into the “useful” queue with an heuristic value computed
for an evaluated action. This is inspired by intuitions sim-
ilar to the favored actions proposed in (McDermott 1996,
1999), the helpful actions proposed in (Hoffmann and Nebel
2001) and generalized to preferred operators in the Fast
Downward planner (Helmert 2006; Helmert et. al. 2022). As
demonstrated experimentally in (Richter and Helmert 2009),



an additional priority queue for preferred operators is bene-
ficial. We chose 50% : 50%. Note that “useful” situations
can be misleading due to delete relaxation inside heuristic.

We have collected data for the generalized Countdown
benchmark (Soutchanski 2025; Soutchanski and Liu 2025).
There are at least 6 counters that can hold any nonnega-
tive integers, but the total number of counters is not given.
Initially, our program assigns a randomly generated integer
from O to 100 to each counter. There are 2 possible actions:
either addition or multiplication. Each action stores the re-
sult in one of the participating counters, but another counter
becomes unavailable. The goal is to produce the target inte-
ger in any of the initially available counters. We randomly
generated 10 Addition problems, where the target number
can be produced by adding the initially available numbers,
and 10 Multiplication problems, where the target number
is the product of the initial numbers. We run our planner
implemented in PROLOG on a desktop computer with an
11th Gen Intel(R) Core(TM) i7-11700K CPU 3.60GHz, sin-
gle thread, under the ECLiPSe System version 7.0#63 (April
24,2022), using a 75 MB memory limit. The results are pre-
sented in Tables 1 and 2 with averages over 5 runs. The
planner can run either Greedy Best First Search (G) or A*
search (A). For some reason, multiplication problems are
easier than the addition problem, e.g., the addition problem
5 was not solved (out of memory). Greedy search expanded
more situations than A* (see the 1st row). However, greedy
search was usually faster than A* (see the 2nd row). Our ran-
dom planning instances and the domain encoding are pub-
licly available as (Soutchanski 2025).

5 Discussion and Related Work

There is little work on planning without DCA. The previous
research on generalized planning focused on iterative plans
with sensing actions, programs or learning algorithms that
support the search for a policy (a mapping from states to
actions) that works at once for a set of planning problems.
We are interested in computing a sequential plan for a single
problem instance under the open world assumption without
DCA. We do not consider generalized planning in this paper.
Recall we consider only deterministic actions.

Moreover, we solve the single planning problem for goals
that are conjunctive queries with 3J-quantifiers over ob-
ject variables, but except for (Frances and Geffner 2016;
Funkquist, Stahlberg, and Geffner 2024), previous work
considered mostly conjunctions of ground fluents as goals.

Helmert (Helmert 2002) provides a comprehensive clas-
sification of the numeric planning formalisms, demonstrates
the cases where the planning problem is undecidable, and
explores the reductions between numeric planning for-
malisms. The numeric planning problems where the range
of values is finite can be reduced to classical planning with
DCA; see, e.g. (Gigante and Scala 2023; Bonassi, Percassi,
and Scala 2025). In a general case, numeric planning goes
beyond DCA. Our proposal is different since we consider
a BPP problem with incomplete knowledge, without DCA,
and each FO model of progression in BPP is infinite in con-
trast to numeric planning, where each state is a finite set.

It is well-known that FF-inspired heuristics based on

delete relaxation and value accumulation are inadequate for
realistic numeric planning benchmarks related to resources
and exchange, e.g., see (Coles et al. 2013). For this rea-
son, recent research on numeric planning explores other
heuristics, alternative reductions and approaches, e.g., see
(Cardellini and Giunchiglia 2025; Chen and Thiébaux 2024;
Gnad et al. 2025; Illanes and Mcllraith 2017; Kuroiwa et al.
2022; Kuroiwa and Beck 2024; Piacentini et al. 2018; Scala
et al. 2020a,b; Scala and Bonassi 2025). Similarly, our ap-
proach faces the challenge of how to develop informative
heuristics that guide search for a solution to BPP problem.
This research direction remains important future work.

Several publications discuss when progression can be for-
mulated in FO logic, e.g., see (Liu and Lakemeyer 2009;
Vassos, Sardina, and Levesque 2009; Vassos and Patrizi
2013). They did not consider Dg, as a proper theory, and
did not attempt planning.

(Petrick and Bacchus 2002, 2004; Petrick 2006) pre-
sented a knowledge-level approach to conditional planning
with sensing actions under incomplete information (without
CWA). Their approach is based on a first-order language of
the situation calculus. Our work is different since our formal
approach relies on progression, we require Dg, be a proper
theory, we consider planning when objects can be destroyed
or created, and we control search for a plan with a domain-
independent heuristic.

(Corréa et al. 2024) considers planning with object cre-
ation as an extension of classical planning (the universe of
objects is finite), with complete knowledge, but their seman-
tics is based on an unusual object assignment to variables
that can take values outside of the universe. We define cre-
ated/destroyed objects syntactically, while they are defined
semantically in (Corréa et al. 2024). Our BPP problem is
more general, since we plan over infinite domains and con-
sider incomplete knowledge. Our semantics is standard.

Note that in contrast to (De Giacomo, Lespérance, and
Patrizi 2016), we do not require that the number of objects
where fluent holds must be bounded for all s. Informally,
boundedness of the set of objects that may ever be consid-
ered by our planner becomes the consequence of working
with a proper BAT and imposing the upper bound on the
number of actions.

(Soutchanski and Young 2023) proposed a lifted deduc-
tive planner based on the situation calculus (SC), but their
implementation required both DCA and CWA. Their plan-
ner was competitive with Fast Downward (Helmert 2006;
Helmert et. al. 2022) in terms of IPC scores based on the
number of visited states and the length of the plan (over clas-
sical planning benchmarks with a small number of objects).

The case of open-world planning is explored in (Borg-
wardt et al. 2021, 2022). They work with state constraints
that are not explored in our approach. However, they restrict
arities of fluents to use description logics ontologies, but in
our approach fluents and actions can have any finite arity.

To our knowledge, there are no other heuristic planners
that can solve problems without the DCA given incomplete
initial theory. The conformant planners previously devel-
oped require DCA (Hoffmann and Brafman 2006; Palacios
and Geffner 2009; Grastien and Scala 2020). The planner



in (Hoffmann and Brafman 2006) was actually inspired by
situation calculus, and it does search over sequences of ac-
tions, but it works only at a propositional level. (Finzi, Pirri,
and Reiter 2000) does open-world planning, but they require
DCA, see details in (Reiter 2001).

Future work may consider the case where Dg, may in-
clude 3-quantifiers over objects; they can be replaced with
Skolem constants. This case was discussed for proper KBs
in (De Giacomo, Lespérance, and Levesque 2011).

6 Appendix

We collect here all the axioms related to the basic action
theory of our example.
The proper initial theory Dg, is a finite consistent set of
ground fluent literals whose only situation term is Sp:
Vp((p:Ken Vp=DBobV p=Sue) — person(p))
VE((t=T1 Vi=T, Vt=Ts) — tray(t))
VE((t=Ty Vt=Ts V t=Ts) — —person(t))
Vp((p=KenV p=DBobV p=Sue) — ﬂtray(p))
Vp((p=KenV p=DBobV p=Sue) — ﬂserved(p,So))
Vi, l,r((t=T1 Al=0Ar=100) — available(t,l, 7“,5’0))
Vi, Lr((t=T> Al=10 A r=40) — —available(t,, r,So)).
The goal formula is

served(pz,0) A p1
angleSize(pa,n,0)).

Ip1, p2, n(served(pr, o) A
# p2 A angleSize(pi,n,o) A

The precondition axioms Dyp,:
poss(serve(t,p,l,r),s) < tray(t) A person(p) A
available(t,l,r, s),
poss(cutHalf(t,1,7),s) <> available(t,l,r,s) A1 > L.

The successor state axioms Dgg:
served(t,p,do(a, s)) < 3Ir(a=serve(t,p,l,r)) vV
served(t,p, s),
angleSize(p,n,do(a, s)) < Hlﬂr( a=serve(t,p,l,r) A
n=(+r)) VangleSize(p,n,s),
available(t,l',r', do(a, s)) +
3r(a=cutHalf (t,1,r) ANl'=1AT'=05-(I+71))V
3r(a=cutHalf (t,1,r) NU'=0.5-(L+7) A1/ =)V
available(t,l,r,s) A
a # cutHalf (t,1,7) A —=3Ip(a=serve(t,p,,T).

Dune 1s a finite set of unique name axioms (UNA) for
actions and named objects. For example,
Ken=Bob A\ Ken=/Sue \ Bob= Sue,
Ty #To NTy#T3 N T #1T3,
serve(t,p,l,r) # cutHal f(t,1,7),
cutHalf(t,l,r)=cutHalf(t',I',r") = t=t' Nl=U' ANr=1'
and other similar axioms.

The foundational axioms X:
Va1VasVs1Vsa.do(ar, s1) =do(as, s2) — a1 =az2 A s1 =8
_\(S C So),
VaVsVs'. s T do(a,s') <+ (sT s’ Vs=¢'),
VP. (P(So) AVaVs(P(s) = P(do(a, s)))) — Vs(P(s)).
These axioms say that the set of situations is really a tree;
there are no cycles, and no merging. These foundational

axioms X are domain independent. They are not actually
needed in any reasonable implementation that maintains sit-
uations as lists or as sequences, since it will immediately
satisfy these foundational axioms.
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